МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по УР

Документ подписан электронной подписью

Сертификат: a1119608-cdff-4455-b54e-5235117c185c Владелец: Сенченко Павел Васильевич Действителен: c 17.09.2019 по 16.09.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАГНИТНЫЕ ЭЛЕМЕНТЫ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Промышленная электроника

Форма обучения: заочная (в том числе с применением дистанционных образовательных технологий)

Кафедра: промышленной электроники (ПрЭ)

Курс: **3** Семестр: **6**

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	6 семестр	Всего	Единицы
Самостоятельная работа	94	94	часов
Самостоятельная работа под руководством преподавателя	8	8	часов
Контрольные работы	2	2	часов
Подготовка и сдача зачета	4	4	часов
Общая трудоемкость	108	108	часов
(включая промежуточную аттестацию)		3	3.e.

Формы промежуточной аттестации	Семестр	Количество
Зачет	6	
Контрольные работы	6	1

1. Общие положения

1.1. Цели дисциплины

1. Изучение свойств, статических и динамических характеристик и параметров магнитных элементов, как функциональных элементов электронных устройств, необходимых и достаточных для расчета магнитных элементов.

1.2. Задачи дисциплины

- 1. Обеспечить студентам знания по устройству, принципу действия и электромагнитным свойствам типовых классов магнитных элементов энергетической электроники.
- 2. Изучить методики расчета электромагнитных и конструктивных параметров магнитных элементов с учетом требований, предъявляемых техническим заданием и обусловленных спецификой их работы в высокочастотных транзисторных преобразователях различного функционального назначения, с использованием средств автоматизации проектирования.
- 3. Формирование навыков использования стандартных программных средств для расчета конструктивных и электромагнитных параметров магнитных элементов в новых условиях применения.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.01.03.02.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

Компетенция	Индикаторы достижения компетенции	Планируемые результаты обучения по дисциплине						
	Универсальные компетенции							
	Общепрофессиональны	е компетенции						
-	-	-						
	Профессиональные к	омпетенции						
ПК-3. Способен	ПК-3.1. Знает принципы	Знает принципы конструирования МЭЭУ						
выполнять расчет и	конструирования отдельных							
проектирование	аналоговых блоков							
электронных приборов,	электронных приборов							
схем и устройств	ПК-3.2. Умеет проводить	Умеет проводить расчеты характеристик						
различного	оценочные расчеты	МЭЭУ						
функционального	характеристик электронных							
назначения в	приборов							
соответствии с	ПК-3.3. Владеет навыками	Владеет навыками подготовки						
техническим заданием	подготовки	принципиальных электрических схем, в						
с использованием	принципиальных и	которых применяются МЭЭУ						
средств автоматизации	монтажных электрических							
проектирования	схем							

4. Объем дисциплины в зачетных единицах с указанием количества академических часов,

выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Виды учебной деятельности		Семестры
		6 семестр
Контактная работа обучающихся с преподавателем, всего	10	10
Самостоятельная работа под руководством преподавателя	8	8
Контрольные работы	2	2
Самостоятельная работа обучающихся, всего	94	94
Самостоятельное изучение тем (вопросов) теоретической части	82	82
дисциплины		
Подготовка к контрольной работе	12	12
Подготовка и сдача зачета	4	4
Общая трудоемкость (в часах)	108	108
Общая трудоемкость (в з.е.)	3	3

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Контр. раб.	СРП, ч.	Сам. раб., ч	Всего часов (без промежуточной аттестации)	Формируемые компетенции
		6 семе	стр		
1 Общие положения проектирования магнитных элементов электронных устройств.	2	2	18	22	ПК-3
2 Дроссели.		2	28	30	ПК-3
3 Трансформаторы функциональных узлов энергетической электроники.		2	36	38	ПК-3
4 Магнитные усилители.		2	12	14	ПК-3
Итого за семестр	2	8	94	104	
Итого	2	8	94	104	_

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов (тем) дисциплины

6 семестр						
Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины		Формируемые компетенции			
таолица 5.2	содержиние разделов (тем) дисциплины					

1 Общие положения проектирования магнитных элементов электронных устройств.	Теоретические положения проектирования магнитных элементов. Конструкции магнитороводов магнитных элементов. Никель-цинковые и марганец-цинковые ферритовые сердечники. Сердечники из порошковых магнитомягких материалов. Сердечники для трансформаторов и дросселей высокочастотных транзисторных преобразователей. Конструкции обмоток магнитных элементов. Геометрические параметры магнитных элементов.	2	ПК-3
	Итого	2	
2 Дроссели.	Сглаживающие дроссели. Дроссели переменного тока.	2	ПК-3
	Итого	2	
3 Трансформаторы функциональных узлов энергетической	Эквивалентная схема трансформатора. Классификация режимов работы трансформатора. Электромагнитные и геометрические соотношения в трансформаторах. Импульсный трансформатор. Трансформатор тока.	2	ПК-3
электроники.	Итого	2	
4 Магнитные усилители.	Нереверсивные магнитные усилители без обратной связи. Реверсивные магнитные усилители без обратной связи. Магнитные усилители с обратной связью. связью	2	ПК-3
	Итого	2	
	Итого за семестр	8	
	Итого	8	

5.3. Контрольные работы

Виды контрольных работ и часы на контрольные работы приведены в таблице 5.3.

Таблица 5.3 – Контрольные работы

№ п.п.	Виды контрольных работ	Трудоемкость, ч	Формируемые компетенции
	6 семестр		
1	Контрольная работа с автоматизированной проверкой	2	ПК-3
	Итого за семестр	2	
	Итого	2	

5.4. Лабораторные занятия

Не предусмотрено учебным планом

5.5. Практические занятия (семинары)

Не предусмотрено учебным планом

5.6. Контроль самостоятельной работы (курсовой проект / курсовая работа)

Не предусмотрено учебным планом

5.7. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.7.

Таблица 5.7. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной	Трудоемкость,	Формируемые	Формы			
(тем) дисциплины	работы	Ч	компетенции	контроля			
6 семестр							
1 Общие положения проектирования магнитных	Самостоятельное изучение тем (вопросов) теоретической части	16	ПК-3	Зачёт, Тестирование			
элементов электронных устройств.	дисциплины Подготовка к контрольной работе	2	ПК-3	Контрольная работа			
	Итого	18					
2 Дроссели.	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	24	ПК-3	Зачёт, Тестирование			
	Подготовка к контрольной работе	4	ПК-3	Контрольная работа			
	Итого	28					
3 Трансформаторы функциональных узлов энергетической	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	32	ПК-3	Зачёт, Тестирование			
электроники.	Подготовка к контрольной работе	4	ПК-3	Контрольная работа			
	Итого	36					
4 Магнитные усилители.	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	10	ПК-3	Зачёт, Тестирование			
	Подготовка к контрольной работе	2	ПК-3	Контрольная работа			
	Итого	12					
	Итого за семестр	94					
	Подготовка и сдача зачета	4		Зачет			
	Итого	98					

5.8. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.8.

Таблица 5.8 – Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Формируом на мамиотамини	Виды учебной деятельности		ятельности	Форма и компроня
Формируемые компетенции	Конт.Раб.	СРП	Сам. раб.	Формы контроля
ПК-3	+ + +		+	Зачёт, Контрольная работа,
				Тестирование

6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Легостаев, Н. С. Магнитные элементы электронных устройств: Учебное пособие / Легостаев Н. С. - Томск: Эль Контент, 2014. - 186 с. Доступ из личного кабинета студента. [Электронный ресурс]: — Режим доступа: https://study.tusur.ru/study/library.

7.2. Дополнительная литература

- 1. Легостаев, Н. С. Магнитные элементы электронных устройств: Учебно-методическое пособие [Электронный ресурс] / Н. С. Легостаев. Томск: ТУСУР, 2019. 146 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 2. Обрусник, В.П. Магнитные элементы электронных устройств: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 125 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Легостаев, Н.С. Магнитные элементы электронных устройств: методические указания по изучению дисциплины / Н.С. Легостаев. Томск: Факультет дистанционного обучения, ТУСУР, 2014. 43 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 2. Легостаев, Николай Степанович Материалы электронной техники: учеб.-метод. пособие / H.C. Легостаев. Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2014. 74 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 3. Легостаев, Н.С. Магнитные элементы электронных устройств: методические указания по организации самостоятельной работы для студентов заочной формы обучения направления подготовки 11.03.04 Электроника и наноэлектроника, обучающихся с применением дистанционных образовательных технологий / Н.С. Легостаев, С.Г. Михальченко. Томск: ФДО, ТУСУР, 2018. 17 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Иное учебно-методическое обеспечение

1. Легостаев, Н.С. Магнитные элементы электронных устройств [Электронный ресурс]: электронный курс / Н. С. Легостаев. - Томск : ФДО, ТУСУР, 2019. (доступ из личного кабинета студента) .

7.5. Современные профессиональные базы данных

и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Общие требования к материально-техническому и программному обеспечению дисциплины

Учебные аудитории для проведения занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, для самостоятельной работы студентов

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Веб-камера 6 шт.;
- Наушники с микрофоном 6 шт.;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Google Chrome;
- Kaspersky Endpoint Security для Windows;
- LibreOffice;
- Microsoft Windows;

8.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.3. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в

лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Общие положения проектирования магнитных	ПК-3	Зачёт	Перечень вопросов для зачета
элементов электронных устройств.		Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий
2 Дроссели.	ПК-3	Зачёт	Перечень вопросов для зачета
		Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий
3 Трансформаторы функциональных узлов	ПК-3	Зачёт	Перечень вопросов для зачета
энергетической электроники.		Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий
4 Магнитные усилители.	ПК-3	Зачёт	Перечень вопросов для зачета
		Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Тестирование	Примерный перечень тестовых заданий

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по дисциплине

Оценка	Баллы за ОМ	Формулировка требований к степени сформированности планируемых результатов обучения		
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

Оценка	Формулировка требований к степени компетенции		
2	Не имеет необходимых представлений о проверяемом материале		
(неудовлетворительно)	или		
	Знать на уровне ориентирования, представлений. Обучающийся знает		
	основные признаки или термины изучаемого элемента содержания, их		
	отнесенность к определенной науке, отрасли или объектам, узнает в		
	текстах, изображениях или схемах и знает, к каким источникам нужно		
	обращаться для более детального его усвоения.		
3	Знать и уметь на репродуктивном уровне. Обучающихся знает		
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях.		
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на		
	репродуктивном уровне, указывать на особенности и взаимосвязи		
	изученных объектов, на их достоинства, ограничения, историю и		
	перспективы развития и особенности для разных объектов усвоения.		
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает		
	изученный элемент содержания системно, произвольно и доказательно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях, учитывая и указывая связи и зависимости между этим		
	элементом и другими элементами содержания дисциплины, его		
	значимость в содержании дисциплины.		

9.1.1. Примерный перечень тестовых заданий

- 1. Укажите единицу измерения в системе СИ напряженности магнитного поля:
 - а) Тл (Тесла);
 - б) Гн (Генри);
 - в) Э (Эрстед);
 - г) Вб (Вебер);
 - д) А/м (ампер/метр);
 - e) Γc (Γaycc).
- 2. Укажите связь единицы измерения магнитной индукции в системе СИ с единицей измерения магнитной индукции в системе СГСМ:
 - а) 1Гс=100 мкТл;
 - б) 1Гс=10^4 Тл;
 - в) 1Тл=10^4 Гс;
 - г) 1Тл=10 кГс.
- 3. Укажите численное значение для магнитной постоянной.
 - a) $8.85 \times 10^{-12} \Phi/M$;
 - б) 1,38 х 10^-23 Дж/К;
 - в) 4пи х 10^-7 Гн/м;
 - г) 9,274 х 10^-24 Дж/Тл.
- 4. Для магнитопровода типоразмера ПЛР 21x20x85(25) определите толщину навивки.
 - a) 21 mm;
 - б) 20 мм;
 - в) 85 мм;
 - г) 25 мм.
- 5. Магнитодиэлектрик представляет собой:
 - а) сплав алюминия, кремния и железа;
 - б) твердый раствор кремния в железе;
 - в) композицию из порошков высокопроницаемого ферромагнетика с диэлектрической связкой:
 - г) неметаллическое соединение из смеси окислов железа, никеля, цинка, марганца, меди и других металлов.
- 6. Укажите тип сердечника, геометрические формы которого определяют конструктивное исполнение магнитного элемента стержневой конструкции.
 - a) R;
 - б) КВ;
 - в) ППК;
 - г) Ш.
- 7. Укажите сердечник для сглаживающих дросселей.
 - а) кольцевой ферритовый сердечник без дискретного зазора;
 - б) стержневой ферритовый сердечник без дискретного зазора;
 - в) стержневой ферритовый сердечник с несколькими дискретными зазорами.
- 8. При наличии немагнитного зазора в магнитопроводе дросселя
 - а) увеличивается магнитная индукция в материале магнитопровода при заданной напряженности магнитного поля;
 - б) увеличивается магнитная проницаемость материала магнитопровода при заданной напряженности магнитного поля;
 - в) уменьшается магнитная индукция в материале магнитопровода при заданной напряженности магнитного поля.
- 9. Немагнитный зазор в магнитопровод дросселя вводится с целью:
 - а) увеличения индуктивности дросселя;
 - б) уменьшения объема магнитопровода дросселя;
 - в) увеличения энергоемкости дросселя.
- 10. Определите энергию сглаживающего дросселя индуктивностью 18 мк Γ н, если известно, что максимальное значение тока дросселя 10 A.
 - а) 450 мкДж;
 - б) 900 мкДж;
 - в) 1350 мкДж;
 - г) 1800 мкДж.

- 11. Определите индукцию магнитного поля в материале магнитопровода из ферромагнетика с длиной средней линии
 - 0,1 м и немагнитным зазором 0,01 м, если индукция магнитного поля в зазоре 0,35 Тл.
 - а) 0,035 Тл;
 - б) 0,35 Тл;
 - в) 0,70 Тл;
 - г) 1,40 Тл.
- 12. Найти число ампер-витков, необходимое для получения в соленоиде длиной 0,1м и диаметром 0,01м магнитного поля напряженностью 500 А/м.
 - a) 50;
 - б) 100;
 - в) 250;
 - г) 500.
- 13. Определите активное сопротивление обмотки дросселя при перегреве дросселя на 70°C. Число витков обмотки дросселя 250, средняя длина одного витка обмотки дросселя 0,06 м. Площадь сечения провода 2,545 мм². Материал провода медь. Удельное электрическое сопротивление медного провода при температуре 20°C принять 0,017 мкОмхм.
 - a) 70 MOM;
 - б) 130 мОм;
 - в) 680 мОм;
 - г) 1260 мОм.
- 14. Укажите уравнение, которое дает основание параметр трансформатора п назвать «коэффициентом трансформации».
 - a) n=U1/U2;
 - б) n=L1/M=w1/w2;
 - B) Ls1=(L1-nM);
 - Γ) w2 со штрихом=w1=n*w2.
- 15. Укажите уравнение, которое дает основание параметр трансформатора п назвать «коэффициентом приведения».
 - a) n=U1/U2;
 - б) n=L1/M=w1/w2;
 - B) Ls1=(L1-nM);
 - Γ) w2 со штрихом=w1=n*w2.
- 16. Объем V магнитопровода трансформатора связан с частотой f соотношением:
 - a) $V \sim f$:
 - 6) $V \sim f^2$;
 - B) $V \sim 1/f$;
 - Γ) V ~ 1 / f^0.25.
- 17. Величина Soк x Sм (Soк площадь окна магнитопровода; Sм площадь поперечного сечения магнитопровода) трансформатора связана с максимальной магнитной индукцией Вm в магнитопроводе трансформатора соотношением:
 - а) (Sok x Sм) \sim Bm;
 - б) (Sok x Sm) \sim Bm 2 ;
 - в) (Soк x Sм) $\sim 1/Bm$;
 - г) (Sok x Sm) \sim Bm 0 ,5.
- 18. Число витков w1 первичной обмотки трансформатора для синусоидальной магнитной индукции связано с максимальной магнитной индукцией Вт соотношением:
 - a) w1 \sim Bm 0 ,5;
 - 6) w1 ~ Bm;
 - B) w1 $\sim 1/Bm^{0.5}$;
 - Γ) w1 ~ 1/Bm.
- 19. Магнитный усилитель строят:
 - а) на сглаживающем дросселе;
 - б) на дросселе с подмагничиванием;
 - в) на импульсном трансформаторе.
- 20. Если сердечник магнитного усилителя находится в двух переменных магнитных полях

различной частоты, то в усилительную схему включают:

- а) выпрямители;
- б) сглаживающие дроссели;
- в) импульсные трансформаторы;
- г) транзисторы.

9.1.2. Перечень вопросов для зачета

Приведены примеры типовых заданий из банка контрольных тестов, составленных по пройденным разделам дисциплины.

- 1. Укажите тип магнитопровода ленточного броневой конструкции:
 - а) ПЛ:
 - б) ПЛМ:
 - в) ПЛР;
 - г) ШЛО;
 - д) ОЛ.
- 2. Универсальной называется обмотка:
 - а) витки которой располагаются в ряд вдоль ее оси с шагом, равным наружному диаметру провода;
 - б) однослойная, витки которой расположены с заданным шагом;
 - в) витки которой располагаются под углом к плоскости ее вращения и имеют резкие перегибы у торцов обмотки;
 - г) витки которой уложены группами вдоль ее оси.
- 3. Укажите тип сердечника, геометрические формы которого определяют конструктивное исполнение магнитного элемента броневого исполнения.
 - a) R;
 - б) EER:
 - в) ПП; г) UU.
- 4. Альсифер представляет собой:
 - а) сплав железа с никелем;
 - б) твердый раствор кремния в железе;
 - в) сплав алюминия, кремния и железа;
 - г) сплав железа с молибденом.
- 5. Индуктивность дросселя прямо пропорциональна
 - а) квадрату числа витков обмотки и сечению магнитопровода;
 - б) сечению магнитопровода и обратно пропорциональна квадрату числа витков обмотки;
 - в) числу витков обмотки и обратно пропорциональна сечению магнитопровода.
- 6. Определите добротность обмотки дросселя на частоте $f=100~{\rm к}\Gamma{\rm ц}$. Индуктивность дросселя $L=10~{\rm mk}\Gamma{\rm h}$, активное сопротивление обмотки дросселя $R=0,628~{\rm Om}$.
 - a) 2;
 - б) 6;
 - в) 10;
 - г) 20.
- 7. Индуктивность сглаживающего дросселя L = 20 мкГн . Максимальное значение тока в обмотке сглаживающего дросселя Im=(9,5+0,5) А. Определите энергию сглаживающего дросселя.
 - а) 100 мкДж;
 - б) 500 мкДж;
 - в) 1000 мкДж;
 - г) 1500 мкДж.
- 8. Определите магнитную проницаемость кольцевого магнитопровода с длиной средней линии магнитного поля в материале магнитопровода 100 мм и немагнитным зазором 0,3 мм. На магнитопроводе расположена обмотка с числом витков w=400. При протекании по намагничивающей обмотке тока силой I=0,25 A в зазоре создается магнитная индукция B=0,2 Тл.
 - a) 105;
 - б) 305;
 - в) 605;

- r) 805.
- 9. Определите индуктивность рассеяния вторичной обмотки 2-х обмоточного трансформатора, если известно, что индуктивность вторичной обмотки 0,16 Гн, а индуктивность намагничивания, приведенная по виткам к вторичной обмотке 0,13 Гн.
 - a) 0,01Γ_H;
 - б) 0,03Гн;
 - в) 0,07Гн;
 - г) 0,09Гн.
- 10. Однотактные магнитные усилители подразделяют на магнитные усилители
 - а) с последовательным и параллельным включением нагрузки;
 - б) с последовательным включением нагрузки;
 - в) с параллельным включением нагрузки.

9.1.3. Примерный перечень вариантов (заданий) контрольных работ

Магнитные элементы электронных устройств

- 1. Укажите тип сердечника ленточного стержневой конструкции.
 - а) ШЛ;
 - б) ПЛ;
 - в) ШЛМ;
 - г) ШЛР;
 - д) ОЛ.
- 2. Шаговой называется обмотка:
 - а) все витки которой расположены в один слой;
 - б) витки которой располагаются в ряд вдоль ее оси с шагом, равным наружному диаметру провода;
 - в) однослойная, витки которой расположены с заданным шагом;
 - г) витки которой уложены группами вдоль ее оси; д) витки которой уложены в виде плоской спирали.
- 3. Укажите порошковый материал с наименьшей магнитной индукцией насыщения.
 - a) MPP;
 - б) High Flux;
 - в) Kool Mµ;
 - г) X Flux;
 - д) Iron Powder.
- 4. Определите сплав, основу магнитной фазы которого составляет тройной сплав системы Al Si Fe:
 - а) Мо-пермаллой (МРР);
 - б) High Flux;
 - в) Sendast;
 - г) 80HXC.
- 5. Электротехническая сталь представляет собой:
 - а) сплав железа с никелем;
 - б) твердый раствор кремния в железе;
 - в) сплав железа с кобальтом;
 - г) сплав железа с марганцем.
- 6. При согласном включении двух обмоток электродвижущая сила самоиндукции
 - а) вычитается из электродвижущей силы самоиндукции;
 - б) добавляется к электродвижущей силе самоиндукции;
 - в) добавляется к электродвижущей силе самоиндукции с коэффициентом, равным отношению числа витков w1 первичной обмотки к числу витков w2 вторичной обмотки;
 - г) вычитается из электродвижущей силы самоиндукции с коэффициентом, равным отношению числа витков w1 первичной обмотки к числу витков w2 вторичной обмотки.
- 7. Особенностью сглаживающего дросселя является присутствие
 - а) в токе обмотки дросселя только переменной составляющей;
 - б) в токе обмотки дросселя только постоянной составляющей;
 - в) в токе обмотки дросселя как переменной, так и постоянной составляющей одновременно;

- г) в магнитопроводе дросселя немагнитного зазора.
- 8. Оптимизация немагнитного зазора в магнитопроводе дросселя это подбор такого зазора, при котором дроссель обладает
 - а) наибольшей добротностью;
 - б) наибольшей индуктивностью;
 - в) наименьшим объемом при заданной энергоемкости;
 - г) наименьшей добротностью.
- 9. Индуктивность дросселя при постоянной величине магнитной проницаемости
 - а) пропорциональна числу витков и квадрату площади сечения магнитопровода;
 - б) пропорциональна квадрату числа витков и обратно пропорциональна площади сечения магнитопровода;
 - в) пропорциональна квадрату числа витков и площади сечения магнитопровода;
 - г) пропорциональна числу витков и площади сечения магнитопровода.
- 10. Мощность трансформатора
 - а) пропорциональна произведению площади окна магнитопровода на площадь поперечного сечения магнитопровода и обратно пропорциональна частоте напряжения на первичной обмотке;
 - б) пропорциональна площади окна магнитопровода и обратно пропорциональна площади поперечного сечения магнитопровода;
 - в) пропорциональна произведению площади окна магнитопровода на площадь поперечного сечения магнитопровода; г) пропорциональна произведению площади окна магнитопровода на площадь поперечного сечения магнитопровода и обратно пропорциональна магнитной индукции в магнитопроводе трансформатора.

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения	
С нарушениями слуха	Тесты, письменные	Преимущественно письменная	
	самостоятельные работы, вопросы	проверка	
	к зачету, контрольные работы		
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная	
	зачету, опрос по терминам	проверка (индивидуально)	
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно	
двигательного аппарата	контрольные работы, письменные	дистанционными методами	
	самостоятельные работы, вопросы	ъ	
	к зачету		
С ограничениями по	Тесты, письменные	Преимущественно проверка	
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися	
показаниям	к зачету, контрольные работы,	исходя из состояния	
	устные ответы	обучающегося на момент	
		проверки	

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ПрЭ протокол № 24 от «_8_» _ 11 _ 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Заведующий обеспечивающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Старший преподаватель, каф. ТЭО	А.В. Гураков	Согласовано, 4bfa5749-993c-4879- adcf-c25c69321c91
Доцент, каф. ПрЭ	Д.О. Пахмурин	Согласовано, се9е048а-2a49-44a0- b2ab-bc9421935400
РАЗРАБОТАНО:		
Профессор, каф. ПрЭ	Н.С. Легостаев	Разработано, 6332ca5f-c16e-4579- bbc4-ee49773dfd8d
Ассистент, каф. ТЭО	Ю.Л. Замятина	Разработано, 1663c03a-62e7-4092- 902a-95591a9d4047
Заведующий кафедрой промышленной электроники (ПрЭ), каф. ПрЭ	С.Г. Михальченко	Разработано, 706957f1-d2eb-4f94- b533-6139893cfd5a