МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ
Проректор по УР
Сенченко П.В.
«13» 12 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

НЕЙРОННЫЕ СЕТИ В АНАЛИЗЕ ДАННЫХ

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: **01.04.02 Прикладная математика и информатика** Направленность (профиль) / специализация: **Компьютерное моделирование и управление в** электронных системах

Форма обучения: заочная

Кафедра: радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

Курс: **2** Семестр: **4**

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	4 семестр	Всего	Единицы
Лекционные занятия	4	4	часов
Практические занятия	4	4	часов
Курсовая работа	9	9	часов
Самостоятельная работа	116	116	часов
Контрольные работы	2	2	часов
Подготовка и сдача экзамена	9	9	часов
Общая трудоемкость	144	144	часов
(включая промежуточную аттестацию)		4	3.e.

Формы промежуточной аттестации	Семестр	Количество
Экзамен	4	
Курсовая работа	4	
Контрольные работы	4	1

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по УР Дата подписания: 13.12.2023 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

1. Общие положения

1.1. Цели дисциплины

1. Является ознакомление студентов с принципами функционирования нейрокомпьютерных сетей, освоение студентами методик обучения нейрокомпьютерных сетей, обучение студентов использованию теории нейрокомпьютерных сетей на практике. Формирование у студентов теоретических знаний и практических навыков в области нейросетевого моделирования технических и социально-экономических систем.

1.2. Задачи дисциплины

- 1. Является приобретение студентами теоретических знаний и практических навыков в применении методов проектирования и использования нейрокомпьютерных сетей, разработки на их основе ПО для решения практических задач.
- 2. Постановка задач и методам их решения с использованием современной вычислительной техники и программного обеспечения.
- 3. Свободное владение математическим аппаратом построения и выбора алгоритмов обучения нейронных сетей.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль профессиональной подготовки (major).

Индекс дисциплины: Б1.В.01.ДВ.03.02.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

таолица 5.1 Комп					
Компетенция	Индикаторы достижения	Планируемые результаты обучения по			
Томпотопция	компетенции	дисциплине			
	Универсальные компетенции				
-					
	Общепрофессиональны	е компетенции			
-	-	-			
	Профессиональные к	сомпетенции			
ПК-1. Способен	ПК-1.1. Знает принципы	Из теории знает и понимает принципы			
проводить научные	проведения научных	нейронных сетей в анализе данных			
исследования и	исследований				
получать новые	ПК-1.2. Умеет проводить	Из практического опыта умеет			
научные и прикладные	научные исследования и	результативно проводить научные			
результаты	получать новые научные и	исследования в области нейронных сетей в			
самостоятельно и в	прикладные результаты	анализе данных			
составе научного	ПК-1.3. Владеет навыками	Из теории и практического опыта			
коллектива	проводить научные	применяет навыки проведения научных			
	исследования и получать	исследований в области нейронных сетей в			
	новые научные и	анализе данных			
	прикладные результаты				
	самостоятельно и в составе				
	научного коллектива				

ПК-2. Способен	ПК-2.1. Знает подходы к	Из теоретических знаний понимает
		<u> </u>
разрабатывать и	разработке и анализу	подходы к разработке и анализу
анализировать	концептуальных и	концептуальных и теоретических моделей
концептуальные и	теоретических моделей	нейронных сетей в анализе данных
теоретические модели	решаемых научных проблем	
решаемых научных	и задач	
проблем и задач	ПК-2.2. Умеет	Из практического опыта может применять
	разрабатывать и	навыки разработки и анализа
	анализировать	концептуальных и теоретических моделей
	концептуальные и	нейронных сетей в анализе данных
	теоретические модели	
	решаемых научных проблем	
	и задач	
	ПК-2.3. Владеет навыками	Из теории и практического опыта
	разработки и анализа	использует навыки для разработки и
	концептуальных и	анализа концептуальных и теоретических
	теоретических моделей	моделей нейронных сетей в анализе
	решаемых научных проблем	данных
	и задач	

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

тиолици 4.1 грудосткость дисциплины по видим у теоной деятельности			
Всего	Семестры		
часов	4 семестр		
19	19		
4	4		
4	4		
9	9		
2	2		
116	116		
45	45		
32	32		
39	39		
9	9		
144	144		
4	4		
	Всего часов 19 4 4 9 2 116 45 32 39 9 144		

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Лек. зан., ч	Прак.	Курс. раб.	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
1 История появления нейронных сетей. Формальные нейроны искусственных нейронных сетей. Модели нейронов и методы их обучения	1	семестр 1	9	35	48	ПК-1, ПК-2
2 Правило Хебба. Дельта-правило. Адалин. Однослойная нейронная сеть. Однонаправленные многослойные сети сигмоидального типа. Ассоциативные сети	1	1		46	48	ПК-1, ПК-2
3 Рекуррентные сети на базе персептрона. Сеть с самоорганизацией корреляционного типа и на основе конкуренции. Вероятностная нейронная сеть	2	2		35	39	ПК-1, ПК-2
Итого за семестр	4	4	9	116	133	
Итого	4	4	9	116	133	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2. Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции		
4 семестр					

1 История появления	А) Биологические основы	1	ПК-1, ПК-2
нейронных сетей.	функционирования нейрона. Первые		
Формальные нейроны	модели нейронной сети. Прикладные		
искусственных	возможности нейронных сетей.		
нейронных сетей.	Определение искусственных нейронных		
Модели нейронов и	сетей. Свойства биологических и		
методы их обучения	искусственных нейронных сетей.		
	Способы реализации нейросетей. Типы		
	задач, решаемых нейронными сетями.		
	Недостатки и ограничения нейронных		
	сетей (НС). Основные определения для		
	НС. Межнейронные связи.		
	Искусственный		
	нейрон. Архитектуры НС.		
	Предварительный подбор архитектуры		
	сети. Подбор оптимальной архитектуры		
	сети. Методы наращивания сети.		
	Подбор обучающих выборок.		
	Добавление шума в обучающие		
	выборки. Распознавание и		
	классификация образов. Нейронная сеть		
	для сжатия данных. Идентификация		
	динамических объектов. Постановка		
	задачи обучения НС. Классификация		
	законов и способов обучения.		
	Персептрон.		
	Сигмоидальнйы нейрон. Нейрон типа		
	«адалайн». Инстар и оутстар		
	Гроссберга. Нейроны типа WTA.		
	Модель нейрона Хебба. Стохастическая		
	модель нейрона. "Проклятие		
	размерности". Избыточность входных		
	данных. Генетические алгоритмы.		
	Отбор входных данных для обучения		
	сети с помощью генетических		
	алгоритмов.		
	Б) В рамках курсовой работы		
	необходимо выполнить следующие		
	этапы: 1) Выбор темы; 2) Составление		
	плана написания работы; 3)		
	формулирование объекта и предмета		
	исследований; 4) формулирование цели		
	и задач исследования; 5) Поиск, подбор		
	и изучение источников.		
	Итого	1	

		<u> </u>	1
2 Правило Хебба.	А) Перцептронная сеть с обратной	1	ПК-1, ПК-2
Дельта-правило.	связью: структура сети RMLP, алгоритм		
Адалин. Однослойная	обучения сети RMLP, подбор		
нейронная сеть.	коэффициента обучения, коэффициент		
Однонаправленные	усиления сигнала. Рекуррентная сеть		
многослойные сети	Элмана: структура сети, алгоритм		
сигмоидального типа.	обучения сети Элмана, обучение с		
Ассоциативные сети	учетом момента. Нейронные сети		
	встречного распространения. Сети		
	Кохонена. Обучение слоя Кохонена.		
	Примеры обучения сети Кохонена.		
	Применение сети Кохонена для сжатия		
	данных. Слой Гроссбера: обучение слоя		
	Гроссбера, модификации.		
	Энергетическая функция		
	корреляционных сетей. Нейронные сети		
	РСА: математическое введение,		
	определение первого главного элемента,		
	алгоритм определения множества		
	главных компонентов. Сети,		
	использующие статистический подход.		
	Метод «модельной закалки». Пример		
	алгоритма минимизации функции.		
	Машина Больцмана. Архитектура		
	нейронной сети PNN. Пример		
	модульной нейронной сети.		
	Б) В рамках курсовой работы		
	необходимо выполнить следующие		
	этапы: 1) поиск источников данных; 2)		
	подготовка обучающей и тестовой		
	выборок; 3) выбор архитектуры		
	нейронной сети; 4) выбор метода		
	обучения нейронной сети; 5) обучение		
	нейронной сети; 6) проведение		
	непосредственного исследования; 7)		
	достижение сходимости алгоритма		
	обучения и получения ожидаемой		
	точности.		
	Итого	1	
	111010		1

	1		
3 Рекуррентные сети на	А) Математические основы. Радиальная	2	ПК-1, ПК-2
базе персептрона. Сеть	нейронная сеть. Методы обучения		
с самоорганизацией	радиальных нейронных сетей. Пример		
корреляционного типа и	использования радиальной сети.		
на основе конкуренции.	Методы подбора количества базисных		
Вероятностная	функций: эвристические методы, метод		
нейронная сеть	ортогонализации Грэма-Шмидта.		
	Однослойная сеть. Многослойный		
	персептрон. Структура персептронной		
	сети. Алгоритм обратного		
	распространения ошибки. Градиентные		
	алгоритмы обучения сети: основные		
	положения, алгоритм наискорейшего		
	спуска, алгоритм переменной метрики,		
	алгоритм Левенберга-Марквардта,		
	алгоритм сопряженных градиентов.		
	Подбор коэффициента обучения.		
	Методы		
	инициализации весов. Линейный		
	ассоциатор. Закон обучения Хебба.		
	Рекуррентные ассоциативные сети. Сеть		
	Хопфилда. Алгоритм		
	функционирования сети Хопфилда,		
	емкость памяти. Сеть "Brain State in a		
	Вох". Двунаправленная ассоциативная		
	память. Стохастическое обучение.		
	Машина Больцмана.		
	Б) В рамках курсовой работы		
	необходимо выполнить следующие		
	этапы: 1) составление отчета о		
	проделанной работе; 2) процесс		
	оформления курсовой; 3) Создание		
	презентации на защиту; 4) согласование		
	отчета и презентации у руководителя; 5)		
	защита курсовой.		
	Итого	2	
	Итого за семестр	4	
	Итого	4	

5.3. Контрольные работы

Виды контрольных работ и часы на контрольные работы приведены в таблице 5.3. Таблица 5.3 – Контрольные работы

№ п.п.	Виды контрольных работ	Трудоемкость, ч	Формируемые компетенции
	4 семестр)	
1	Контрольная работа с автоматизированной проверкой	2	ПК-1, ПК-2
	Итого за семестр	2	
	Итого	2	

5.4. Лабораторные занятия

5.5. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.5.

Таблица 5.5. – Наименование практических занятий (семинаров)

Названия разделов (тем)	Наименование практических	Трудоемкость,	Формируемые
дисциплины	занятий (семинаров)	Ч	компетенции
	4 семестр		
1 История появления	Изучение программных	1	ПК-1, ПК-2
нейронных сетей.	продуктов, реализующих		
Формальные нейроны	нейронные сети. Изучение		
искусственных нейронных	методов обучения нейронной сети		
сетей. Модели нейронов и	для однослойной нейронной		
методы их обучения	сети типа перцептрон		
-	(Галушкин). «Поиск наилучшего		
	классификатора для решения		
	задачи бинарной классификации		
	при использовании нескольких		
	типов моделей обучения и		
	сравнительной оценке их		
	результатов» (Лобода)		
	Итого	1	
2 Правило Хебба. Дельта-	Исследование	1	ПК-1, ПК-2
правило. Адалин.	самоорганизующихся сетей		ŕ
Однослойная нейронная	Кохонена. Исследование		
сеть. Однонаправленные	вероятностной нейронной сети		
многослойные сети	(Галушкин). «Определение		
сигмоидального типа.	оптимального числа кластеров		
Ассоциативные сети	при кластеризации» (Лобода).		
	Итого	1	
3 Рекуррентные сети на базе	Изучение методов обучения	2	ПК-1, ПК-2
персептрона. Сеть с	нейронной сети для		ŕ
самоорганизацией	многослойной нейронной сети		
корреляционного типа и на	типа перцептрон. Исследование		
основе конкуренции.	сети Хопфилда (Галушкин).		
Вероятностная нейронная	«Построение модели линейной		
сеть	регрессии» (Лобода)		
	Итого	2	
	Итого за семестр	4	
	Итого	4	

5.6. Курсовая работа

Содержание самостоятельной работы и ее трудоемкость, а также формируемые компетенции в рамках выполнения курсовой работы представлены в таблице 5.6.

Таблица 5.6 – Содержание самостоятельной работы и ее трудоемкость в рамках выполнения курсовой работы

Содержание самостоятельной работы в рамках выполнения	Трудоемкость,	Формируемые		
курсовой работы	Ч	компетенции		
4 семестр				

1. Обсуждение общего плана курсовой работы и этапов	9	ПК-1, ПК-2
написания. Выбор темы. Постановка цели, задач. 2. Обсуждение		
ведения, технического задания, содержания курсовой		
работы/проекта. 3. Проверка и обсуждения практической		
работы: эксперимента, методики. 4. Обсуждение результатов		
исследовательской/экспериментальной/поисковой части. 5.		
Просмотр презентации, подготовка к защите перед комиссией.		
Итого за семестр	9	
Итого	9	

Примерная тематика курсовых работ:

- 1. Изучение программных продуктов, реализующих нейронные сети
- 2. Изучение методов обучения нейронной сети для однослойной нейронной сети типа перцептрон
- 3. Изучение методов обучения нейронной сети для многослойной нейронной сети типа перцептрон
- 4. Исследование сети Хопфилда
- 5. Исследование самоорганизующихся сетей Кохонена
- 6. Исследование вероятностной нейронной сети.
- 7. Исследование сверточной нейронной сети

5.7. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.7.

Таблица 5.7. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов (тем) дисциплины	самостоятельнои работы	Трудоемкость,	Формируемые компетенции	Формы контроля
		еместр		1
1 История появления	Подготовка к	15	ПК-1, ПК-2	Контрольная
нейронных сетей.	контрольной работе			работа
Формальные нейроны	Написание отчета по	10	ПК-1, ПК-2	Курсовая
искусственных	курсовой работе			работа, Отчет по
нейронных сетей.				курсовой работе
Модели нейронов и	Подготовка к	10	ПК-1, ПК-2	Тестирование
методы их обучения	тестированию			
	Итого	35		
2 Правило Хебба.	Подготовка к	20	ПК-1, ПК-2	Контрольная
Дельта-правило.	контрольной работе			работа
Адалин. Однослойная	Написание отчета по	10	ПК-1, ПК-2	Курсовая
нейронная сеть.	курсовой работе			работа, Отчет по
Однонаправленные				курсовой работе
многослойные сети	Подготовка к	16	ПК-1, ПК-2	Тестирование
сигмоидального типа.	тестированию			
Ассоциативные сети	Итого	46		

3 Рекуррентные сети на	Подготовка к	10	ПК-1, ПК-2	Контрольная
базе персептрона. Сеть с	контрольной работе			работа
самоорганизацией	Написание отчета по	12	ПК-1, ПК-2	Курсовая
корреляционного типа и	курсовой работе			работа, Отчет по
на основе конкуренции.				курсовой работе
Вероятностная	Подготовка к	13	ПК-1, ПК-2	Тестирование
нейронная сеть	тестированию			
	Итого	35		
	Итого за семестр	116		
	Подготовка и сдача	9		Экзамен
	экзамена			
	Итого	125		

5.8. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.8.

Таблица 5.8 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Формануомило	Виды учебной деятельности				
Формируемые компетенции	Лек.	Прак.	Курс.	Сам.	Формы контроля
компетенции	зан.	зан.	раб.	раб.	
ПК-1	+	+	+	+	Контрольная работа, Курсовая работа,
					Отчет по курсовой работе,
					Тестирование, Экзамен
ПК-2	+	+	+	+	Контрольная работа, Курсовая работа,
					Отчет по курсовой работе,
					Тестирование, Экзамен

6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Галушкин, А. И. Нейронные сети: основы теории / А. И. Галушкин. — Москва: Горячая линия-Телеком, 2017. — 496 с. [Электронный ресурс]: — Режим доступа: https://e.lanbook.com/book/111043.

7.2. Дополнительная литература

1. Шматов, Г. П. Нейронные сети и генетический алгоритм : учебное пособие / Г. П. Шматов. — Тверь : ТвГТУ, 2019. — 200 с. [Электронный ресурс]: — Режим доступа: https://e.lanbook.com/book/171312.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

1. Нейронные сети и методы искусственного интеллекта в робототехнике: Методические указания к практическим, лабораторным работам и организации самостоятельной работы для студентов технических специальностей / Ю. О. Лобода - 2022. 20 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/10230.

- 2. Рашка, С. Python и машинное обучение: крайне необходимое пособие по новейшей предсказательной аналитике, обязательное для более глубокого понимания методологии машинного обучения: руководство / С. Рашка; перевод с английского А. В. Логунова. Москва: ДМК Пресс, 2017. 418 с. [Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/100905.
- 3. Смирнов, Г. В. Курсовой проект (работа): Методические указания по выполнению курсового проекта (работы) для студентов всех направлений и уровней подготовки [Электронный ресурс] / Г. В. Смирнов. Томск: ТУСУР, 2024. 25 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10856.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Учебная вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 435 ауд.

Описание имеющегося оборудования:

- Рабочая станция Aquarius Pro P30S79 Intel Core i7/4 Гб;
- RAM/500Гб HDD/LAN (10 шт.);
- Проектор ACER X125H DLP;
- Кондиционер;
- Видеокамера (2 шт.);
- Точка доступа WiFi;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Microsoft PowerPoint Viewer;
- Microsoft Word Viewer;
- Notepad++;
- Scilab;

Учебная вычислительная лаборатория / Лаборатория ГПО "Алгоритм": учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 439 ауд.

Описание имеющегося оборудования:

- Рабочие станции Intel Celeron 1.7 (10 шт.);
- Проектор Acer X125H DLP;
- Экран проектора;
- Видеокамера (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Microsoft PowerPoint Viewer;
- Notepad++;
- Scilab;

Учебная вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 435 ауд.

Описание имеющегося оборудования:

- Рабочая станция Aquarius Pro P30S79 Intel Core i7/4 Гб;
- RAM/500Гб HDD/LAN (10 шт.);
- Проектор ACER X125H DLP;
- Кондиционер;
- Видеокамера (2 шт.);
- Точка доступа WiFi;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Adobe Acrobat Reader;
- Blender:
- Code::Blocks;
- Far Manager;
- Maxima;
- Microsoft Excel Viewer:
- Microsoft PowerPoint Viewer:
- Microsoft Visual Studio 2013 Professional;
- Microsoft Windows 7 Pro;
- NetBeans IDE;
- Notepad++:
- Scilab;

Учебная вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для

проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 435 ауд.

Описание имеющегося оборудования:

- Рабочая станция Aquarius Pro P30S79 Intel Core i7/4 Гб;
- RAM/500Гб HDD/LAN (10 шт.);
- Проектор ACER X125H DLP;
- Кондиционер;
- Видеокамера (2 шт.);
- Точка доступа WiFi;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Adobe Acrobat Reader;
- Blender;
- Code::Blocks;
- Far Manager;
- Java;
- Java SE Development Kit;
- Microsoft Access 2013 Microsoft;
- Microsoft Excel Viewer;
- Microsoft PowerPoint Viewer;
- Microsoft Visual Studio 2013 Professional;
- Microsoft Windows 7 Pro;
- Microsoft Word Viewer;
- NetBeans IDE;
- Notepad++;
- Scilab;

8.3. Материально-техническое и программное обеспечение для курсовой работы

Учебная вычислительная лаборатория / Компьютерный класс: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 435 ауд.

Описание имеющегося оборудования:

- Рабочая станция Aquarius Pro P30S79 Intel Core i7/4 Гб;
- RAM/500Гб HDD/LAN (10 шт.);
- Проектор ACER X125H DLP;
- Кондиционер;
- Видеокамера (2 шт.);
- Точка доступа WiFi;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Adobe Acrobat Reader;
- Code::Blocks;
- Maxima;
- Microsoft Access 2013 Microsoft;
- Microsoft Excel Viewer;
- Microsoft PowerPoint Viewer;
- Microsoft Visual Studio 2013 Professional;
- Microsoft Windows 7 Pro:
- Microsoft Word Viewer;

- MySQL Community edition (GPL);
- NetBeans IDE;
- Notepad++;
- Scilab;

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с **нарушениями зрения** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
------------------------------------	-------------------------	----------------	--------------------------

1 История появления нейронных сетей. Формальные нейроны	ПК-1, ПК-2	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
искусственных нейронных сетей. Модели нейронов и		Отчет по курсовой работе	Примерный перечень тематик курсовых работ
методы их обучения		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
2 Правило Хебба. Дельта- правило. Адалин. Однослойная нейронная сеть.	ПК-1, ПК-2	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
Однонаправленные многослойные сети		Отчет по курсовой работе	Примерный перечень тематик курсовых работ
сигмоидального типа. Ассоциативные сети		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
3 Рекуррентные сети на базе персептрона. Сеть с самоорганизацией	ПК-1, ПК-2	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
корреляционного типа и на основе конкуренции.		Отчет по курсовой работе	Примерный перечень тематик курсовых работ
Вероятностная нейронная сеть		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

		Формулировка требований к степени сформированности		
Оценка	Баллы за ОМ	планируемых результатов обучения		
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков

4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% от	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	или
	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на
	репродуктивном уровне, указывать на особенности и взаимосвязи
	изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает
	изученный элемент содержания системно, произвольно и доказательно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях, учитывая и указывая связи и зависимости между этим
	элементом и другими элементами содержания дисциплины, его
	значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. Сетью без обратных связей называется сеть, все слои которой соединены иерархически; 1) у которой нет синаптических связей, 2) идущих от выхода некоторого нейрона к входам этого же нейрона или нейрона из предыдущего слоя; 3) у которой есть синаптические связи
- 2. Какие сети характеризуются отсутствием памяти? 1) однослойные; многослойные; 2) с обратными связями; 3) без обратных связей
- 3. Входом персептрона являются: 1) вектор, состоящий из действительных чисел; 2) значения 0 и 1; 3) вектор, состоящий из нулей и единиц; 4) вся действительная ось (-?;+?)
- 4. Теорема о двухслойности персептрона утверждает, что: 1) в любом многослойном персептроне могут обучаться только два слоя; 2) способностью к обучению обладают персептроны, имеющие не более двух слоев; 3) любой многослойный персептрон может быть представлен в виде двухслойного персептрона
- 5. Обучением называют: 1) процедуру вычисления пороговых значений для функций активации; 2) процедуру подстройки сигналов нейронов; 3) процедуру подстройки весовых значений

- 6. Нейронная сеть является обученной, если: 1) при подаче на вход некоторого вектора сеть будет выдавать ответ, к какому классу векторов он принадлежит; 2) при запуске обучающих входов она выдает соответствующие обучающие выходы; 3) алгоритм обучения завершил свою работу и не зациклился
- 7. Подаем на вход персептрона вектор а. В каком случае весовые значения нужно уменьшать? 1) всегда, когда на выходе 1; 2) если на выходе 1, а нужно 0; 3) если сигнал персептрона не совпадает с нужным ответом; 4) если на выходе 0, а нужно 1
- 8. Алгоритм обратного распространения заканчивает свою работу, когда: величина ? 1) становится ниже заданного порога; 2) величина w для каждого нейрона становится ниже заданного порога; 3) сигнал ошибки становится ниже заданного порога
- 9. Метод импульса заключается в: 1) использовании производных второго порядка; 2) добавлении к коррекции веса значения, пропорционального величине предыдущего изменения веса; 3) умножении коррекции веса на значение, пропорциональное величине предыдущего изменения веса
- 10. Паралич сети может наступить, когда: 1) весовые значения становятся очень большими; 2) размер шага становится очень большой; 3) размер шага становится очень маленький; 4) весовые значения становятся очень маленькими

9.1.2. Перечень экзаменационных вопросов

- 1. Биологические аспекты нервной деятельности. Биологический нейрон.
- 2. Формальный нейрон Маккалока-Питтса.
- 3. Персептрон Розенблатта.
- 4. Теорема об обучении персептрона.
- 5. Преодоление проблемы линейной разделимости.
- 6. Обучение с учителем: классификация образов.
- 7. Алгоритм обратного распространения ошибки.
- 8. Проблемы обучения: ошибка аппроксимации; переобучение; ошибка, связанная со сложностью модели.
- 9. Оптимизация размера нейронной сети.
- 10. Адаптивная оптимизации архитектуры сети. Валидация обучения. Ранняя остановка обучения.
- 11. Прореживание связей.
- 12. Сети встречного распространения. Структура сети.
- 13. Обучение без учителя: Структура слоя Кохоненна. Структура слоя Гроссберга.
- 14. Обучение слоя Кохонена. Предварительная обработка входных векторов. Выбор начальных значений весовых векторов.
- 15. Обучение слоя Гроссберга. Сеть встречного распространения полностью.
- 16. Нейродинамика в модели Хопфилда. 2
- 17. Функции активации (передаточные функции) нейрона.
- 18. Структура перцептронного нейрона.
- 19. Правило нахождения количества нейронов в персептроне для распознавания заданного числа классов.
- 20. Построение линий классификации персептрона на основании его весов.
- 21. Процесс обучения персептрона.
- 22. Архитектура нейронной сети.
- 23. Правило нахождения количества нейронов в сети для распознавания заданного числа классов.
- 24. Алгоритмы обучения нейронной сети

9.1.3. Примерный перечень вопросов для защиты курсовой работы

- 1. Какова роль искусственной температуры при Больцмановском обучении?
- 2. Сеть Хопфилда заменяется на сеть Хэмминга, если необходимо ускорить время сходимости сети или необходимо повысить число запомненных образцов?
- 3. Какими должны быть весовые значения тормозящих синаптических связей?
- 4. Метод отказа от симметрии синапсов позволяет достигнуть максимальной емкости памяти или обеспечить устойчивость сети?
- 5. Метод машины Больцмана позволяет сети Хопфилда избежать локальных минимумов;

- ускорить процесс обучения или избежать сетевого паралича?
- 6. Обучение персептрона считается законченным, когда ошибка выхода становится достаточно малой или достигнута достаточно точная аппроксимация заданной функции?
- 7. Алгоритм обучения персептрона является алгоритмом «обучения с учителем» или алгоритмом «обучения без учителя»?
- 8. Запускаем обучающий вектор Х. В каком случае весовые значения не нужно изменять, если на выходе сеть даст 1 или, если на выходе сеть даст 0?
- 9. Можем ли мы за конечное число шагов после запуска алгоритма обучения персептрона сказать, что персептрон не может обучиться данной задаче?
- 10. Сигналом ошибки данного выходного нейрона называется разность между выходом нейрона и его целевым значением или производная активационной функции?
- 11. Метод ускорения сходимости заключается в умножении коррекции веса на значение, пропорциональное величине предыдущего изменения веса или использовании производных второго порядка?
- 12. Если два образца сильно похожи, то они могут объединиться в один образец или они могут вызывать перекрестные ассоциации?
- 13. Отсутствие обратных связей гарантирует устойчивость сети или сходимость алгоритма обучения?
- 14. В алгоритме обучения обобщенной машины Больцмана вычисление закрепленных вероятностей начинается после запуска каждой обучающей пары или конечного числа запусков сети с некоторого случайного значения?
- 15. Если входной вектор соответствует одному из запомненных образов, то выходом распознающего слоя является соответствующий запомненный образец или в распознающем слое возбуждается один нейрон?

9.1.4. Примерный перечень тематик курсовых работ

- 1. Изучение программных продуктов, реализующих нейронные сети
- 2. Изучение методов обучения нейронной сети для однослойной нейронной сети типа перцептрон
- 3. Изучение методов обучения нейронной сети для многослойной нейронной сети типа перцептрон
- 4. Исследование сети Хопфилда
- 5. Исследование самоорганизующихся сетей Кохонена
- 6. Исследование вероятностной нейронной сети.
- 7. Исследование сверточной нейронной сети

9.1.5. Примерный перечень вариантов (заданий) контрольных работ

- 1. История возникновения нейронных сетей.
- 2. Нейронные сети. Архитектуры сетей.
- 3. Обратное распространение ошибки. Дельта-правило.
- 4. Обратное распространение ошибки. Функция активности.
- 5. Сигмоид и его виды. Сигмоидная производная.
- 6. Персептрон и его характеристики.
- 7. Многослойный персептрон.
- 8. Сверточные нейронные сети.
- 9. Нейронные сети LSTM.
- 10. Импульсные нейронные сети.
- 11. Обратное распространение ошибки. Функция активности и ее виды.
- 12. Роль нелинейности. Эффект запирания сети. Модель второго порядка.
- 13. Сеть Хопфилда. Синхронная и асинхронная реализация. Емкость сети.
- 14. Сеть Кохонена. Кластеризация. Выбор кластеров. Оценка близости. Изменение кластеров. Выбор коэффициента обучения.
- 15. Сеть Хемминга. Расстояние Хемминга для полярной и биполярной кодировки.

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление

студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

возможностями здоровья и инвалидов				
Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки		
Категории обучающихся	материалов	результатов обучения		
С нарушениями слуха	Тесты, письменные	Преимущественно письменная		
	самостоятельные работы, вопросы	проверка		
	к зачету, контрольные работы			
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная		
	зачету, опрос по терминам	проверка (индивидуально)		
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно		
двигательного аппарата	контрольные работы, письменные	дистанционными методами		
	самостоятельные работы, вопросы			
	к зачету			
С ограничениями по	Тесты, письменные	Преимущественно проверка		
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися		
показаниям	к зачету, контрольные работы,	исходя из состояния		
	устные ответы	обучающегося на момент		
		проверки		

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;

- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры РЭТЭМ протокол № 85 от «27 » 11 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. РЭТЭМ	В.И. Туев	Согласовано, a755e75e-6728-43c8- b7c9-755f5cd688d8
Заведующий обеспечивающей каф. РЭТЭМ	В.И. Туев	Согласовано, a755e75e-6728-43c8- b7c9-755f5cd688d8
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. РЭТЭМ	Н.Н. Несмелова	Согласовано, eebb9cff-fbf0-4a31- a395-8ca66c97e745
Старший преподаватель, каф. РЭТЭМ	А.Ю. Хомяков	Согласовано, a895711e-560a-4ef0- b416-953f14417f70
РАЗРАБОТАНО:		
Профессор, каф. РЭТЭМ	М.Ю. Катаев	Разработано, 929f34b8-0cef-484f- b3aa-9d71c10f8183