МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Ż	<i>УТВЕРЖДА</i>	ΑЮ
	Прорен	стор по УР
	Сен	ченко П.В.
«13»	12	2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: **11.03.04** Электроника и наноэлектроника Направленность (профиль) / специализация: Элементная база квантовых технологий

Форма обучения: очная

Факультет: Факультет электронной техники (ФЭТ)

Кафедра: электронных приборов (ЭП)

Курс: **2** Семестр: **3**

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	3 семестр	Всего	Единицы
Лекционные занятия	26	26	часов
Практические занятия	18	18	часов
в т.ч. в форме практической подготовки	18	18	часов
Лабораторные занятия	16	16	часов
Самостоятельная работа	48	48	часов
Общая трудоемкость	108	108	часов
(включая промежуточную аттестацию)	3	3	3.e.

Формы промежуточной аттестации	Семестр
Зачет	3

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сенченко П.В.

Должность: Проректор по УР Дата подписания: 13.12.2023 Уникальный программный ключ: a1119608-cdff-4455-b54e-5235117c185c

1. Общие положения

1.1. Цели дисциплины

1. Формирование у студентов представлений об основах математического аппарата изучения физических полей — одного из центральных объектов современной физики и техники, находящего широкое применение при изучении математических моделей в научных и прикладных залачах.

1.2. Задачи дисциплины

- 1. Получить знания о реальных (в первую очередь физических) процессах на основе решения краевых задач для уравнений в частных производных.
- 2. Выработать навыки математического моделирования реальных (в первую очередь физических) процессов на основе решения краевых задач для уравнений в частных производных.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.02.06.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

таомица 3.1 Компетенции и индикаторы их достижения				
Компетенция	Индикаторы достижения	Планируемые результаты обучения по		
Компетенция	компетенции	дисциплине		
Универсальные компетенции				
-	-	-		
Общепрофессиональные компетенции				
Профессиональные компетенции				

ПК-1. Способен	ПК-1.1. Знает основные	Знает математический аппарат теории
строить простейшие	физические и	дифференциальных уравнений и
физические и	математические модели	математической физики. Знает физические
математические	приборов, схем, устройств и	и математической модели физических
модели приборов, схем,	установок различного	процессов и явлений, происходящих в
устройств и установок	функционального	приборах и устройствах различного
различного	назначения	функционального назначения с
функционального		использованием квантовых технологий.
назначения с	ПК-1.2. Умеет	Умеет проектировать физические и
использованием	проектировать физические и	математические модели приборов, схем,
квантовых технологий	математические модели	устройств и установок различного
	приборов, схем, устройств и	функционального назначения на основе
	установок различного	представлений и аппарата математической
	функционального	физики.
	назначения	
	ПК-1.3. Владеет навыками	Владеет навыками построения простейших
	построения простейших	физических и математических моделей
	физических и	приборов, схем, устройств и установок
	математических моделей	различного функцинального назначения с
	приборов, схем, устройств и	использованием оптических и квантовых
	установок различного	технологий на основе представлений и
	функционального	аппарата математической физики.
	назначения с	
	использованием квантовых	
	технологий	

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Print a vivo fivo in vio gradia vio cerva	Всего	Семестры
Виды учебной деятельности	часов	3 семестр
Контактная аудиторная работа обучающихся с преподавателем, всего	60	60
Лекционные занятия	26	26
Практические занятия	18	18
Лабораторные занятия	16	16
Самостоятельная работа обучающихся, в т.ч. контактная	48	48
внеаудиторная работа обучающихся с преподавателем, всего		
Подготовка к зачету	20	20
Подготовка к тестированию	20	20
Подготовка к лабораторной работе, написание отчета	8	8
Общая трудоемкость (в часах)	108	108
Общая трудоемкость (в з.е.)	3	3

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в

таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины 1 Основные сведения об уравнениях с частными производными (УЧП) 2 Моделирование физических	Лек. зан., ч	Прак. зан., ч еместр 2	Лаб. раб.	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции ПК-1 ПК-1
процессов уравнениями в частных производных 3 Классификация и приведение к	2	-	4	6	12	ПК-1
каноническому виду линейных УЧП второго порядка			-			
4 Решение УЧП методом разделения переменных (метод Фурье)	2	-	-	4	6	ПК-1
5 Собственные значения и собственные функции. Задача Штурма-Лиувилля	2	4	-	4	10	ПК-1
6 Численные и приближенные методы решения УЧП	2	-	-	4	6	ПК-1
7 Уравнения гидродинамики: уравнение движения жидкости, уравнение неразрывности, уравнение состояния	2	-	-	4	6	ПК-1
8 Метод интегральных преобразований. Понятие интегрального преобразования	4	-	-	4	8	ПК-1
9 Математическое моделирование электрических процессов	4	6	4	6	20	ПК-1
10 Нелинейные волновые уравнения	2	-	4	6	12	ПК-1
Итого за семестр	26	18	16	48	108	
Итого	26	18	16	48	108	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции
	3 семестр		

1 Основные сведения об	Определение УЧП. Порядок	4	ПК-1
уравнениях с частными	уравнения.		
производными (УЧП)	Особенности решения УЧП.		
	Понятие о		
	полной и неполной системе		
	уравнений в		
	частных производных.		
	Линейные и		
	квазилинейные уравнения.		
	Понятие о		
	краевых задачах		
	математической физики.		
	Основные уравнения		
	математической		
	физики.		
	Итого	4	
2 Моделирование физических	Законы сохранения как основа	2	ПК-1
процессов уравнениями в	модельного		
частных производных	описания физического		
	процесса. Вывод		
	одномерной математической		
	модели		
	теплопроводности на основе		
	закона		
	сохранения энергии и закона		
	Фурье.		
	Понятие об аксиоматическом		
	методе		
	моделирования.		
	Необходимость		
	граничных условий (ГУ) и		
	начальных		
	условий (НУ). Уравнение		
	теплопроводности при учете		
	различных		
	дополнительных факторов.		
	Итого	2	

2 1/		2	TTL/ 1
3 Классификация и приведение	Гиперболические,	2	ПК-1
к каноническому виду	параболические и		
линейных УЧП второго порядка	1		
	соответствие		
	их типам физических задач.		
	Приведение к		
	каноническому виду		
	уравнений		
	гиперболического типа. Метод		
	характеристик. Приведение к		
	каноническому виду		
	уравнений		
	параболического типа.		
	Приведение		
	эллиптических уравнений к		
	канонической		
	форме. Классификация и		
	канонические		
	формы линейных уравнений		
	2-го порядка		
	для п независимых		
	переменных.		
	Итого	2	
4 Решение УЧП методом	Линейные однородные ГУ.	2	ПК-1
разделения переменных (метод	Алгоритм	2	
Фурье)	разделения переменных. Учет		
Фурве)	граничных и		
	начальных условий. Свойство		
	ортогональности для системы		
	функций.		
	Анализ решения УЧП		
	методом разделения		
	переменных. Преобразование		
	задачи с		
	неоднородными ГУ в задачу с		
	однородными ГУ. Задача		
	теплопроводности с		
	производной в ГУ.		
	Итого	2	

	1		
5 Собственные значения и	Самосопряженное уравнение	2	ПК-1
собственные функции. Задача	Штурма-		
Штурма-Лиувилля	Лиувилля. Свойства задачи		
	Штурма-		
	Лиувилля. Типы краевых		
	условий.		
	Некоторые важные задачи		
	Штурма-		
	Лиувилля, к которым сводится		
	решение		
	физических задач. Решение		
	неоднородного		
	уравнения методом		
	разложения по		
	собственным функциям.		
	Алгоритм		
	решения и его реализация.		
	Физическая		
	интерпретация решения.		
	Итого	2	

6 Численные и приближенные	Сравнение аналитических	2	ПК-1
методы решения УЧП	решений с		
	численными решениями.		
	Понятия		
	аналитического и численного		
	решений.		
	Преимущества численных		
	решений.		
	Преимущества численных		
	решений. Задача		
	и пример параметрической		
	идентификации. Метод		
	конечных		
	разностей. Конечно-		
	разностные		
	аппроксимации. Правая, левая		
	И		
	центральная разностные		
	производные.		
	Решение задачи Дирихле		
	методом		
	конечных разностей.		
	Алгоритм численного		
	решения задачи Дирихле.		
	Матричная		
	форма записи решения задачи		
	Дирихле.		
	Замена производных,		
	входящих в ГУ,		
	разностными		
	аппроксимациями при		
	решении задачи Неймана.		
	Итого	2	

	1		
7 Уравнения гидродинамики:	Вывод уравнений акустики.	2	ПК-1
уравнение движения жидкости,	Волновое		
уравнение неразрывности,	уравнение. Формула		
уравнение состояния	Кирхгофа. Принцип		
	Гюйгенса. Акустическая		
	интерпретация,		
	Граничные условия для		
	акустических		
	волн. Уравнение Гельмгольца.		
	Постановка		
	задач дифракции акустических		
	волн.		
	Решение уравнения		
	Гельмгольца в		
	сферических координатах.		
	Дифракция		
	плоской акустической волны		
	на шаре.		
	Уравнения теории упругости.		
	Уравнения		
	упругих колебаний.		
	Итого	2	

Ядро преобразования. 4 Преобразований. Понятие интегрального преобразования Преобразование — путь к уменьшению числа независимых переменных в УЧП. Схема алгоритма решения задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований. Интегральных преобразований. Интегральное преобразование	ПК-1
преобразование — путь к уменьшению числа независимых переменных в УЧП. Схема алгоритма решения задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
уменьшению числа независимых переменных в УЧП. Схема алгоритма решения задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
переменных в УЧП. Схема алгоритма решения задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
Схема алгоритма решения задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
задачи методом интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
интегральных преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
преобразований. Прямое и обратное преобразование. Виды интегральных преобразований.	
обратное преобразование. Виды интегральных преобразований.	
Виды интегральных преобразований.	
интегральных преобразований.	
преобразований.	
Интегральное преобразование	
rinter parisitoe inpecopasosanne	
как	
разложение функции в	
некоторый спектр	
компонент. Примеры спектров	
периодических и	
непериодических	
функций. Преобразование	
Фурье и его	
применение для решения УЧП. Фурье-	
образ функции и его свойства	
(исходная	
функция-результат обратного	
преобразования, линейность,	
замена	
дифференцирования	
умножением,	
свертка). Решение задачи	
Коши (на	
примере уравнения	
теплопроводности)	
методом преобразования	
Фурье. Алгоритм	
решения и его реализация. Анализ	
решения, функция Грина	
(функция	
источника). Физическая	
интерпретация	
решения. Проявление	
принципа	
суперпозиции. Условия	
применимости	
преобразования Фурье и	
преобразования	
Лапласа для УЧП.	
Итого 4	

9 Математическое	Уравнения Максвелла.	4	ПК-1
моделирование электрических	Уравнения		
процессов	электростатики. Объемный		
	потенциал, его		
	свойства. Электростатическая		
	интерпретация объемного		
	потенциала.		
	Физическая интерпретация		
	основных		
	граничных условий в		
	электростатике.		
	Сведение внутренней и		
	внешней задач		
	Дирихле, внутренней и		
	внешней задач		
	Неймана к интегральным		
	уравнениям.		
	Исследование основных		
	краевых задач для		
	уравнения Лапласа с помощью		
	интегральных уравнений.		
	Обобщенные		
	функции и их свойства.		
	Сингулярные		
	обобщенные функции, дельта-		
	функция		
	Дирака. Фундаментальные		
	решения для		
	уравнений математической		
	физики. Метод		
	функции Грина. Построение		
	функций		
	Грина.		
	Итого	4	
10 Нелинейные волновые	Уравнение Кортевега-де	2	ПК-1
уравнения	Фриза. Солитоны.		
	Волновые уравнения для		
	электромагнитного поля.		
	Плоские решения		
	уравнений Максвелла.		
	Краевые задачи		
	дифракции для		
	электромагнитных волн.		
	Итого	2	
	Итого за семестр		
	Итого	26	

5.3. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.3. Таблица 5.3. – Наименование практических занятий (семинаров)

Названия разделов (тем)	Наименование практических	Трудоемкость,	Формируемые
дисциплины	занятий (семинаров)	Ч	компетенции
	3 семестр		
1 Основные сведения об	1. Классификация линейных	2	ПК-1
уравнениях с частными	уравнений второго порядка		
производными (УЧП)	2. Приведение линейных		
	уравнений второго порядка к		
	канонической форме		
	Итого	2	
2 Моделирование физических	3. Канонические формы	6	ПК-1
процессов уравнениями в	линейных уравнений с		
частных производных	постоянными коэффициентами		
	4. Нахождение общего решения		
	линейного однородного		
	уравнения 1-го порядка		
	5. Краевая задача для		
	однородного уравнения		
	теплопроводности		
	6. Краевая задача для		
	однородного волнового		
	уравнения		
	Итого	6	
5 Собственные значения и	7. Краевая задача для	4	ПК-1
собственные функции. Задача	неоднородного волнового		
Штурма-Лиувилля	уравнения		
	8. Формула Даламбера решения		
	задачи Коши для волнового		
	уравнения		
	Итого	4	
9 Математическое	9. Краевые задачи для	6	ПК-1
моделирование	уравнения Лапласа		
электрических процессов	10. Уравнение Лапласа в		
	цилиндрических координатах.		
	Решение задачи Дирихле для		
	кольца		
	11. Решение задачи Дирихле		
	для уравнения Лапласа в круге		
	12. Численные методы решения		
	задач по уравнениям		
	математической физики		
	Итого	6	
	Итого за семестр	18	
	Итого	18	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4. Таблица 5.4 — Наименование лабораторных работ

Названия разделов (тем)	Наименование лабораторных	Трудоемкость,	Формируемые	
дисциплины	работ	Ч	компетенции	
3 семестр				

2 Моделирование	Моделирование параболических	4	ПК-1
физических процессов	уравнений в частных		
уравнениями в частных	производных по схеме		
производных	Кранка-Николсона		
	Итого	4	
3 Классификация и	Решение уравнений в частных	4	ПК-1
приведение к	производных гиперболического		
каноническому виду	типа		
линейных УЧП второго	Итого	4	
порядка	Итого	4	
9 Математическое	Решение дифференциальных	4	ПК-1
моделирование	уравнений эллиптического типа		
электрических процессов	Итого	4	
10 Нелинейные волновые	Пространственные солитоны в	4	ПК-1
уравнения	керровской среде с насыщением		
	нелинейности		
	Итого	4	
	16		
	Итого	16	

5.5. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	3 cen	иестр		
1 Основные сведения	Подготовка к зачету	2	ПК-1	Зачёт
об уравнениях с	Подготовка к	2	ПК-1	Тестирование
частными	тестированию			
производными (УЧП)	Итого	4		
2 Моделирование	Подготовка к зачету	2	ПК-1	Зачёт
физических процессов уравнениями в частных	Подготовка к тестированию	2	ПК-1	Тестирование
производных	Подготовка к лабораторной работе, написание отчета	2	ПК-1	Лабораторная работа
	Итого	6		
3 Классификация и	Подготовка к зачету	2	ПК-1	Зачёт
приведение к каноническому виду линейных УЧП второго порядка	Подготовка к тестированию	2	ПК-1	Тестирование
	Подготовка к лабораторной работе, написание отчета	2	ПК-1	Лабораторная работа
	Итого	6		

4 Решение УЧП	Подготовка к зачету	2	ПК-1	Зачёт
методом разделения	Подготовка к	2	ПК-1	Тестирование
переменных (метод	тестированию			
Фурье)	Итого	4		
5 Собственные	Подготовка к зачету	2	ПК-1	Зачёт
значения и собственные	Подготовка к	2	ПК-1	Тестирование
функции. Задача	тестированию			
Штурма-Лиувилля	Итого	4		
6 Численные и	Подготовка к зачету	2	ПК-1	Зачёт
приближенные методы	Подготовка к	2	ПК-1	Тестирование
решения УЧП	тестированию			
	Итого	4		
7 Уравнения	Подготовка к зачету	2	ПК-1	Зачёт
гидродинамики:	Подготовка к	2	ПК-1	Тестирование
уравнение движения	тестированию	2	TIK-1	Тестирование
жидкости, уравнение	Тестированию			
неразрывности, уравнение состояния	Итого	4		
8 Метод интегральных	Подготовка к зачету	2	ПК-1	Зачёт
преобразований.	Подготовка к зачету	2	ПК-1	
Понятие интегрального	тестированию	2	11K-1	Тестирование
преобразования	Итого	4		
9 Математическое	Подготовка к зачету	2	ПК-1	Зачёт
моделирование	Подготовка к зачету	2	ПК-1	Тестирование
электрических	тестированию	2	1111-1	Тестирование
процессов	Подготовка к	2	ПК-1	Лабораторная
	лабораторной работе,	2	TIK-1	работа
	написание отчета			paoora
	Итого	6		
10 Нелинейные	Подготовка к зачету	2	ПК-1	Зачёт
волновые уравнения	Подготовка к	2	ПК-1	Тестирование
J P ***	тестированию	_		
	Подготовка к	2	ПК-1	Лабораторная
	лабораторной работе,			работа
	написание отчета			
	Итого	6		
	riioio	v		
	Итого за семестр	48		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.7.

Таблица 5.7 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Формируемые	Виды учебной деятельности				Формал компроня	
компетенции	Лек. зан.	Прак. зан.	Лаб. раб.	Сам. раб.	Формы контроля	
ПК-1	+	+	+	+	Зачёт, Лабораторная работа,	
					Тестирование	

6. Рейтинговая система для оценки успеваемости обучающихся

6.1. Балльные оценки для форм контроля

Балльные оценки для форм контроля представлены в таблице 6.1.

Таблица 6.1 – Балльные оценки

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
		3 семестр		
Зачёт	10	10	10	30
Лабораторная работа	10	10	10	30
Тестирование	10	15	15	40
Итого максимум за период	30	35	35	100
Нарастающим итогом	30	65	100	100

6.2. Пересчет баллов в оценки за текущий контроль

Пересчет баллов в оценки за текущий контроль представлен в таблице 6.2.

Таблица 6.2 – Пересчет баллов в оценки за текущий контроль

Баллы на дату текущего контроля	Оценка
≥ 90% от максимальной суммы баллов на дату ТК	5
От 70% до 89% от максимальной суммы баллов на дату ТК	
От 60% до 69% от максимальной суммы баллов на дату ТК	
< 60% от максимальной суммы баллов на дату ТК	2

6.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 6.3.

Таблица 6.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (хорошо) (зачтено)	85 – 89	В (очень хорошо)
	75 – 84	С (хорошо)
	70 – 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 – 69	
	60 – 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

- 1. Конспект лекций по высшей математике : в 1. 2 ч. / Д. Т. Письменный. М. : Айрис-Пресс, 2007- . 112 с. (наличие в библиотеке ТУСУР 60 экз.).
- 2. Краснопевцев, Е. А. Математические методы физики. Ортонормированные базисы функций: учебное пособие / Е. А. Краснопевцев. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 376 с. [Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/212849.

- 3. Палин, В. В. Методы математической физики. Лекционный курс: учебное пособие для вузов / В. В. Палин, Е. В. Радкевич. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 222 с. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/514448.
- 4. Байков, В. А. Уравнения математической физики : учебник и практикум для вузов / В. А. Байков, А. В. Жибер. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 254 с. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/513681.

7.2. Дополнительная литература

- 1. Математические методы физики. Избранные вопросы : Учебник для вузов / Е. А. Краснопевцев. Новосибирск : НГТУ, 2003. 242 с (наличие в библиотеке ТУСУР 50 экз.).
- 2. Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования: Учебное пособие / Л. И. Магазинников 2012. 206 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2258.
- 3. Полянин, А. Д. Нелинейные уравнения математической физики и механики. Методы решения: учебник и практикум для вузов / А. Д. Полянин, В. Ф. Зайцев, А. И. Журов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 256 с. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/513220.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Методы математической физики: Методические указания к практическим занятиям / П. Пейко 2012. 31 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2351.
- 2. Решение уравнений в частных производных гиперболического типа: Методические указания к лабораторной работе / П. П. Гейко 2012. 15 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2346.
- 3. Моделирование параболических уравнений в частных производных по схеме Кранка-Николсона: Методические указания к лабораторной работе / П. П. Гейко 2012. 14 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2347.
- 4. Решение дифференциальных уравнений эллиптического типа: Методические указания к лабораторной работе / П. П. Гейко 2012. 12 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2348.
- 5. Пространственные солитоны в керровской среде с насыщением нелинейности: Методические указания к лабораторной работе / А. Л. Магазинников 2012. 21 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2350.
- 6. Шандаров, С. М. Уравнения оптофизики: Учебно-методическое пособие по самостоятельной работе [Электронный ресурс] / С. М. Шандаров. Томск: ТУСУР, 2012. 13 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2543.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Лаборатория ГПО: учебная аудитория для проведения занятий лабораторного типа; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 010 ауд.

Описание имеющегося оборудования:

- Электропечи: СУОЛ-12, СУОЛ-0.25 (3 шт.);
- Усилитель электрометрический У5-6, У5-7;
- Вакуумметр термопарный ВТ-3;
- Генератор НЧ;
- Двухканальный источник питания НУ3002Д-2;
- Источник питания переменного и постоянного тока Б5-49;
- Прибор для исследования AЧX: X1-53, P2-54, P2-50, X1-42, X1-36;
- Универсальный источник питания УИП-1 (2 шт.);
- Ампер-вольтметр M198/1;
- Измеритель КСВН панорамный РК2-47;
- Прибор для измерения разности фаз ФК2-12;
- Генераторный блок СВЧ Р2-38;
- Осциллографы: С1-79 (2 шт.), С1-64, С1-75;
- Микроскоп МБС-10;
- Блоки питания: БПС-28-30p, Б5-47;
- Источник высокого напряжения ИВНР-5/50;
- Термошкаф;
- Генератор импульсов: Г5-56, Г5-60;
- Вольтметры: В7-27, В7-40/5;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория ГПО: учебная аудитория для проведения занятий лабораторного типа; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 010 ауд.

Описание имеющегося оборудования:

- Электропечи: СУОЛ-12, СУОЛ-0.25 (3 шт.);
- Усилитель электрометрический У5-6, У5-7;
- Вакуумметр термопарный ВТ-3;
- Генератор НЧ;
- Двухканальный источник питания НУ3002Д-2;
- Источник питания переменного и постоянного тока Б5-49;
- Прибор для исследования AЧX: X1-53, P2-54, P2-50, X1-42, X1-36;
- Универсальный источник питания УИП-1 (2 шт.);
- Ампер-вольтметр M198/1;
- Измеритель КСВН панорамный РК2-47;
- Прибор для измерения разности фаз ФК2-12;
- Генераторный блок СВЧ Р2-38;
- Осциллографы: С1-79 (2 шт.), С1-64, С1-75;

- Микроскоп МБС-10;
- Блоки питания: БПС-28-30p, Б5-47;
- Источник высокого напряжения ИВНР-5/50;
- Термошкаф;
- Генератор импульсов: Г5-56, Г5-60;
- Вольтметры: В7-27, В7-40/5;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с **нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Основные сведения об уравнениях с частными	ПК-1	Зачёт	Перечень вопросов для зачета
производными (УЧП)		Тестирование	Примерный перечень тестовых заданий
2 Моделирование физических процессов уравнениями в	ПК-1	Зачёт	Перечень вопросов для зачета
частных производных		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
3 Классификация и приведение к каноническому	ПК-1	Зачёт	Перечень вопросов для зачета
виду линейных УЧП второго порядка		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
4 Решение УЧП методом разделения переменных	ПК-1	Зачёт	Перечень вопросов для зачета
(метод Фурье)		Тестирование	Примерный перечень тестовых заданий
5 Собственные значения и собственные функции. Задача	ПК-1	Зачёт	Перечень вопросов для зачета
Штурма-Лиувилля		Тестирование	Примерный перечень тестовых заданий
6 Численные и приближенные методы решения УЧП	ПК-1	Зачёт	Перечень вопросов для зачета
		Тестирование	Примерный перечень тестовых заданий
7 Уравнения гидродинамики: уравнение движения	ПК-1	Зачёт	Перечень вопросов для зачета
жидкости, уравнение неразрывности, уравнение состояния		Тестирование	Примерный перечень тестовых заданий
8 Метод интегральных преобразований. Понятие	ПК-1	Зачёт	Перечень вопросов для зачета
интегрального преобразования		Тестирование	Примерный перечень тестовых заданий
9 Математическое моделирование электрических	ПК-1	Зачёт	Перечень вопросов для зачета
процессов		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий

10 Нелинейные волновые	ПК-1	Зачёт	Перечень вопросов для
уравнения			зачета
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень
			тестовых заданий

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

лиспиплине

дисциплине					
Оценка	Баллы за ОМ	Формулировка требований к степени сформированности планируемых результатов обучения			
		знать	уметь	владеть	
2	< 60% от	отсутствие знаний	отсутствие	отсутствие	
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или	
	суммы баллов	знания	частично	фрагментарные	
			освоенное	применение	
			умение	навыков	
3	от 60% до	общие, но не	в целом успешно,	в целом	
(удовлетворительно)	69% от	структурированные	но не	успешное, но не	
	максимальной	знания	систематически	систематическое	
	суммы баллов		осуществляемое	применение	
			умение	навыков	
4 (хорошо)	от 70% до	сформированные,	в целом	в целом	
	89% от	но содержащие	успешное, но	успешное, но	
	максимальной	отдельные	содержащие	содержащие	
	суммы баллов	проблемы знания	отдельные	отдельные	
			пробелы умение	пробелы	
				применение	
				навыков	
5 (отлично)	\geq 90% от	сформированные	сформированное	успешное и	
	максимальной	систематические	умение	систематическое	
	суммы баллов	знания		применение	
				навыков	

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	или
	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.

4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на репродуктивном уровне, указывать на особенности и взаимосвязи изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает изученный элемент содержания системно, произвольно и доказательно воспроизводит свои знания устно, письменно или в демонстрируемых действиях, учитывая и указывая связи и зависимости между этим элементом и другими элементами содержания дисциплины, его значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. Какие физические процессы описывает параболическое уравнение? а) колебания б) движущиеся волны в) стационарные процессы г) диффузию
- 2. Какие физические процессы описывает гиперболическое уравнение? а) теплопроводность б) волны в) стационарные процессы г) диффузию
- 3. Какие физические процессы описывает эллиптическое уравнение? а) теплопроводность б) движущиеся волны в) стационарные процессы г) диффузию
- 4. Что описывают граничные условия? а) взаимосвязь физических переменных б) физическую переменную в начальный момент времени в) физическую переменную на границе г) производную физической переменной в начальный момент времени
- 5. Что описывают начальные условия? а) взаимосвязь физических переменных б) физическую переменную в начальный момент времени в) физическую переменную на границе г) производную физической переменной на границе
- 6. Что описывает уравнение? а) взаимосвязь физических переменных б) физическую переменную в начальный момент времени в) физическую переменную на границе г) производную физической переменной в начальный момент времени
- 7. Уравнение, описывающее поперечные колебания струны, является уравнением а) эллиптического типа; б) смешанного типа; в) гиперболического типа; г) параболического типа
- 8. Уравнение Utt Uxx =0 имеет: а) одно решение б) два решения в) ни одного решения г) бесконечное множество решений
- 9. Укажите тип дифференциального уравнения Лапласа Варианты ответа: а) эллиптический; б) гиперболический; в) круговой; г) параболический;
- 10. Метод разделения переменных применяется для решения смешанных задач, когда: а) УЧП является нелинейным и неоднородным с произвольными граничными условиями б) УЧП является линейным и однородным, граничные условия линейные и однородные в) УЧП является линейным и однородным, область определения в координатном пространстве имеет бесконечную протяженность г) УЧП является нелинейным и однородным с произвольными граничными условиями

9.1.2. Перечень вопросов для зачета

- 1. Определение УЧП. Порядок уравнения. Особенности решения УЧП.
- 2. Законы сохранения как основа модельного описания физического процесса.
- 3. Вывод одномерной математической модели теплопроводности на основе закона сохранения энергии и закона Фурье.
- 4. Метод разделения переменных.
- 5. Линейные однородные граничные условия, начальное условие.

9.1.3. Темы лабораторных работ

- 1. Моделирование параболических уравнений в частных производных по схеме Кранка-Николсона
- 2. Решение уравнений в частных производных гиперболического типа
- 3. Решение дифференциальных уравнений эллиптического типа

4. Пространственные солитоны в керровской среде с насыщением нелинейности

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвадилов

ооможностими эдоровых и и	пралидов		
Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки	
категории обучающихся	материалов	результатов обучения	
С нарушениями слуха	Тесты, письменные	Преимущественно письменна	
	самостоятельные работы, вопросы	проверка	
	к зачету, контрольные работы		
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная	
	зачету, опрос по терминам	проверка (индивидуально)	
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно	
двигательного аппарата	контрольные работы, письменные	дистанционными методами	
	самостоятельные работы, вопросы		
	к зачету		
С ограничениями по	Тесты, письменные	Преимущественно проверка	
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися	
показаниям	к зачету, контрольные работы,	ные работы, исходя из состояния	
	устные ответы	обучающегося на момент	
		проверки	

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ЭП протокол № 11 от «24 » 11 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Заведующий обеспечивающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. ЭП	А.И. Аксенов	Согласовано, d90d5f87-f1a9-4440- b971-ce4f7e994961
Профессор, каф. ЭП	Л.Н. Орликов	Согласовано, 8afa57b7-3fcf-44bc- 922a-3c3f168876e6
РАЗРАБОТАНО:		
Профессор, каф. ЭП	Е.Е. Слядников	Разработано, 428e61dd-26cd-4d18- 850b-74157ffde9f6