Jus

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ
Проректор по учебной работе
П.Е.Троян
« 4 » 2016 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Проектирование сложных систем

Уровень основной образовательной программы магистратура

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Программа прикладной магистратуры «Конструирование и производство бортовой

космической радиоаппаратуры» Форма обучения очная

Факультет радиоконструкторский

Кафедра КИПР (Конструирования и производства радиоаппаратуры)

Kypc 1

Семестр 1

Учебный план набора 2016 года и последующих лет

Распределение рабочего времени:

Nº	Виды учебной работы		Семестр 2	Семестр 3	Семестр 4	Семестр 5	Семестр 6	Семестр 7	Семестр 8	Семестр 9	Семестр 10	Всего	Единицы
1.	Лекции	36										36	часов
2.	Лабораторные работы	16										16	часов
3.	Практические занятия	36										36	часов
4.	Курсовой проект/работа (КРС) (аудиторная)	6										6	часов
5.	Всего аудиторных занятий (Сумма 1-4)	94										94	часов
6.	Из них в интерактивной форме	22										22	часов
7.	Самостоятельная работа студентов (СРС)	86										86	часов
8.	Всего (без экзамена) (Сумма 5,7)	180										180	часов
9.	Самост. работа на подготовку, сдачу экзамена	36										36	часов
10.		216										216	часов
10.	(в зачетных единицах)	6										6	3ET

Экзамен – 1 семестр, курсовая работа – 1 семестр

Томск 2016

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению 11.04.04 «Электроника и наноэлектроника», утвержденного 30.10.2014 №1407, рассмотрена и утверждена на заседании кафедры «3» ______ 20/6 г., протокол № 3/2016.

Разработчик: заведующий кафедрой КИПР Д.В.Озеркин

Рабочая программа согласована с факультетом, профилирующей кафедрой направления подготовки.

Декан

Зав. профилирующей кафедрой КИПР

Д.В.Озеркин

Эксперт:

Профессор кафедры КИПР, д.т.н.

Е.В.Масалов

2

1. Цель освоения дисциплины

Целью изучения дисциплины является формирование и развитие навыков системного мышления у будущих специалистов в области проектирования, экспериментального исследования и эксплуатации электронных средств различного функционального назначения; овладение методами выявления и описания системных свойств сложных объектов любой природы, их соответствия известным принципам и постулатам. Основными задачами дисциплины являются: приобретение знаний об основных этапах создания и описания сложных технических систем, навыков анализа, синтеза и оптимизации их параметров, применение информационных технологий при реализации конкретных систем.

2. Место дисциплины в структуре основной образовательной программы (ООП)

Является обязательной дисциплиной вариативной части Блока 1 рабочего учебного плана 11.04.04-61_68-14-12-2594-3. Базируется на знании дисциплины «Системный анализ и методы научно-технического творчества» учебного плана 11.03.03 «Конструирование и технология электронных средств».

Материалы дисциплины «Проектирование сложных систем» используются при изучении дисциплины «Эксперимент: планирование, проведение, анализ», при выполнении научно-исследовательской работы, а также при выполнении магистерской диссертации.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- способностью проектировать устройства, приборы и системы электронной техники с учетом заданных требований (ПК-8);
- готовностью осуществлять авторское сопровождение разрабатываемых устройств, приборов и системы электронной техники на этапах проектирования и производства (ПК-14).

В результате изучения дисциплины студент должен:

знать: методы системного анализа процессов и объектов; уровень мировых достижений в проектировании и технологии производства электронных средств; методику проектирования сложных технических систем;

уметь: разрабатывать математические модели процессов и объектов, методы их исследования, выполнять их сравнительный анализ; выполнять комплексное проектирование электронных средств (схема-конструкция-технология);

владеть: способами формализации интеллектуальных задач; современными средствами проектирования конструкций и технологических процессов производства электронных средств.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы	Всего часов	Семестр 1
Аудиторные занятия (всего)	94	94
В том числе:		
Лекции	36	36
Практические занятия (ПЗ)	36	36
Лабораторные занятия (ЛР)	16	16
Курсовая работа (КР)	6	6
Самостоятельная работа (всего)	86	86
В том числе:		
Изучение материалов лекций	20	20
Подготовка к практическим занятиям, выполнение курсо-		
вой работы	26	26
Подготовка к лабораторным работам, оформление отчетов	20	20
Самостоятельное изучение отдельных тем	20	20
Вид промежуточной аттестации (экзамен)	36	36
Общая трудоемкость, часов	216	216
зач. ед. трудоемкости	6	6

5. Содержание дисциплины

5.1. Разделы дисциплин и виды занятий

№		Лек- ции,	Лаб. рабо-	Практиче- ские занятия, в том числе		Всего часов	Фор- миру- емые
п/п	Наименование раздела дисциплины		ты, час., СРС, час	выполне- ние кур- совой ра- боты час., СРС, час.	СРС, час.	(без экза- мена)	ком- петен- ции (ОК, ПК)
1.	Определение и свойства систем РЭС	4 5		4 4	9	17	ПК-8
2.	Структура систем РЭС	6 5		6 4	9	21	ПК-8
3.	Моделирование систем РЭС	6 5		6 4	9	21	ПК-8
4.	Способы управления системами	4 5	4 5	4 4	14	26	ПК-8 ПК-14
5.	Критерии развития технических объектов	6 5	4 5	6 + 2 4	14	32	ПК-8 ПК-14
6.	Методы исследования в научно-техническом творчестве	6 5	4 5	6 + 2 4	14	32	ПК-8 ПК-14
7.	Методы генерации новых технических решений	4 10	4 5	4 + 2 2	17	31	ПК-8 ПК-14
	Bcero Bcero (CPC)	36 40	16 20	36 26	86	180	

5.2. Содержание разделов дисциплины (по лекциям)

№ п/п	Наименование разделов	Содержание разделов	Трудоем- кость (час.)	Фор- миру- емые компе- тенции (ОК, ПК)	
1.	Определение и свой-	Общая теория систем, функции технической системы, конструктивные уровни РЭС, структурная модель РЭС	4	HIV 0	
1.	ства систем РЭС	Противоречия в технических системах	CPC – 5	ПК-8	
2.		Совокупность параметров среды, параметры РЭС, компоненты системы	6		
۷.	Структура систем РЭС	сруктура систем РЭС Структурный и функциональный подход в исследовании систем РЭС		ПК-8	
3.	Моделирование систем РЭС	Физические модели, символические модели, словесно- описательные модели, математические модели, аналитиче- ские модели, имитационные модели, структурные модели, функциональные модели, формальные модели, теоретиче- ские модели			
		Теоретические основы моделирования систем РЭС	CPC – 5		
4.	Способы управления	Виды управления по отклонению, типовые динамические звенья	6	ПК-8	
	системами	Способы соединения звеньев системы	CPC – 5	ПК-14	
5.	Критерии развития технических объектов			ПК-8 ПК-14	
		Антропологические критерии	CPC – 5		
6.	Методы исследования в научно-техническом	Теоретический метод исследования	6	ПК-8	
	творчестве	Экспериментальный метод исследования	CPC – 5	ПК-14	
7.	Методы генерации новых технических реше-			ПК-8 ПК-14	
	ний	Использование теории решения изобретательских задач	CPC - 10		
		ИТОГО	36 CPC - 40		

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечивающих (предыдущих) и обеспечиваемых (последующих)	№ разделов данной дисциплины из табл. 5.1, для которых необходимо изучение обеспечивающих (предыдущих) и обеспечиваемых (последующих) дисциплин							
	дисциплин	1	2	3	4	5	6	7	
	Последуі	ощие ди	сциплиі	ны					
1.	Эксперимент: планирование, проведение, анализ (Б1.В.ОД.3)		+	+	+	+	+	+	

2.	Научно-исследовательская работа (Б2.П.2)	+			+			+
3.	Выполнение магистерской диссертации	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень компетенций	Виды занятий					Формы контроля по всем видам занятий
	Л	Лаб	Пр	КР	CPC	1
ПК-8	+	+	+		+	Отчет по лабораторной работе, проверка до- машнего задания, контрольная работа
ПК-14				+	+	Защита курсовой работы

Л – лекция, Лаб – лабораторная работа, Пр – практические и семинарские занятия, КР – курсовая работа, СРС – самостоятельная работа студентов

6. Методы и формы организации обучения

Технологии интерактивного обучения при разных формах занятий в часах

Формы Методы	Лекции (час.)	Практиче- ские заня- тия (час.)	Лабора- торные занятия (час.)	Всего (час.)
IT-методы	2	4		6
Поисковый метод	2	4		6
Решение ситуационных задач	4	6		10
Итого интерактивных занятий	8	14		22

7. Лабораторный практикум

	7. Лаоораторный практикум			
№ п/п	№ раздела дисциплины из табл. 5.1	Наименование лабораторных работ	Трудо- емкость (час.)	Компе- тенции ОК, ПК
1.	5	Законы развития технических систем	4	ПК-8
2.	6	Методы разрешения противоречий в технических системах	4	ПК-8
3.	6	Морфологический анализ вариантов технического решения	4	ПК-8
4.	6	Функционально-стоимостной анализ в задачах оптимизации	4	ПК-8
	итого:		16	

8. Практические занятия

№ п/п	№ раздела дисциплины из табл. 5.1	Тематика практических занятий	Трудо- емкость (час.)	Компетен- ции ОК, ПК
1.	1	Межотраслевой фонд эвристических приемов преобразования объекта — Преобразование формы	4	ПК-8
2.	2	Межотраслевой фонд эвристических	6	ПК-8

		HOMONOD HOOOGOOODONING OF OUT		
		приемов преобразования объекта –		
		Преобразование структуры		
		Межотраслевой фонд эвристических		
3.	3	приемов преобразования объекта –	6	ПК-8
		Преобразования в пространстве		
		Межотраслевой фонд эвристических приемов преобразования объекта –		
4.	4	4	ПК-8	
		Преобразования во времени		
		Межотраслевой фонд эвристических приемов преобразования объекта –		
5.	5	6	ПК-8	
		Преобразование движения и силы		
		Межотраслевой фонд эвристических		
6.		приемов преобразования объекта –	6	ПК-8
0.	6	Преобразование материала и веще-	0	11K-0
		ства		
		Межотраслевой фонд эвристических		
7.	7	приемов преобразования объекта –	4	ПК-8
		Приемы дифференциации		
	HEODO		26	
	ИТОГО:		36	

9. Самостоятельная работа

№ п/ п	Наименование разде- ла дисциплины	Лекции, СРС, час	Лаб. работы, СРС, час	Практические занятия, в том числе выполнение курсовой работы, СРС, час	Всего СРС, час	Контроль вы- полнения рабо- ты	Формируемые компетенции
1	Определение и свой- ства систем РЭС	5		4	9	Проверка кон- спекта самопод- готовки, про- верка домашне- го задания, кон- трольная рабо- та	ПК-8
2	Структура систем РЭС	5		4	9	Проверка кон- спекта самопод- готовки, про- верка домашне- го задания	ПК-8
3	Моделирование си- стем РЭС	5		4	9	Проверка конспекта самоподготовки, проверка домашнего задания, контрольная работа	ПК-8
4	Способы управления системами	5	5	4	14	Проверка кон- спекта самопод- готовки, про- верка домашне- го задания, от- чет по лабора- торной работе, проверка этапа выполнения курсовой рабо- ты	ПК-8 ПК-14

5	Критерии развития технических объектов	5	5	4	14	Проверка кон- спекта самопод- готовки, про- верка домашне- го задания, кон- трольная рабо- та, проверка этапа выполне-	ПК-8 ПК-14
						ния курсовой работы	
6	Методы исследования в научно- техническом творче- стве	5	5	4	14	Проверка конспекта самоподготовки, контрольная работа, отчет по лабораторной работе, проверка этапа выполнения курсовой работы	ПК-8 ПК-14
7	Методы генерации новых технических решений	10	5	2	17	Проверка кон- спекта самопод- готовки, отчет по лаборатор- ной работе, проверка этапа выполнения курсовой рабо- ты	ПК-8 ПК-14
	Всего СРС	40	20	26	86		

10. Примерная тематика курсовых проектов (работ)

Курсовая работа посвящена синтезу дескриптивной модели сложной системы с использованием фонда физико-технических эффектов (ФТЭ).

Общее задание на курсовую работу формулируется следующим образом: синтезировать дескриптивную модель сложной системы, в основу которой положен определенный вариантом задания физико-технический эффект. Исходными данными являются параметры входа A, выхода C, а также внутренняя структура объекта B.

Варианты физико-технических эффектов для выполнения курсовой работы:

- 1. Закон Ома.
- 2. Закон Джоуля-Ленца.
- 3. Эффект Зеебека.
- 4. Эффект Томсона.
- 5. Эффект Пельтье.
- 6. Закон Био-Савара-Лапласа.
- 7. Сверхпроводимость.
- 8. Тензорезистивный эффект.

- 9. Вторичная электронная эмиссия.
- 10. Эффект Ганна.

11. Рейтинговая система для оценки успеваемости студентов

Балльные оценки для элементов контроля в первом семестре, заканчивающимся экзаменом

Элементы учебной дея- тельности	Макс. балл на КТ- 1 с начала семестра	Макс. балл за период между КТ-1 и КТ-2	Макс. балл за период между КТ-2 и на конец семестра	Всего за се- местр
Посещение занятий	4	4	4	12
Выполнение индивидуальных заданий	5	10	10	25
Выполнение лабораторных заданий	6	5	5	16
Контрольные работы на практических занятиях	4	4	0	8
Компонент своевременно-	3	3	3	9
Итого максимум за пери- од	22	26	22	70
Сдача экзамена (макси- мум)				30
Нарастающим итогом	22	48	70	100

Балльные оценки для элементов контроля в первом семестре при выполнении курсовой работы

Элементы учебной дея- тельности	Макс. балл на КТ- 1 с начала семестра	Макс. балл за период между КТ-1 и КТ-2	Макс. балл за период между КТ-2 и на конец семестра	Всего за се- местр
Выполнение очередного этапа курсовой работы	12	16	12	40
Компонент своевременно-	10	10	10	30
Итого максимум за пери- од	22	26	22	70
Защита курсовой работы (максимум)				30
Нарастающим итогом	22	48	70	100

Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ЕСТЅ)
5 (отлично)	90 – 100	А (отлично)
	85 – 89	В (очень хорошо)
4 (хорошо)	75 – 84	С (хорошо)
	70 - 74	D (удордотроритод но)
2 (NHOR HOTTOPHITOHI HO)	65 – 69	D (удовлетворительно)
3 (удовлетворительно)	60 – 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1 Основная литература:

1. Алексеев В.П., Озеркин Д.В. Системный анализ и методы научно-технического творчества / Учебное пособие. – Томск, ТУСУР, 2015. – 325 с. Электронный ресурс https://edu.tusur.ru/training/publications/1284.

12.2 Дополнительная литература:

- 1. Цой Ю.Р. Теория систем и системный анализ. Методические указания по практическим самостоятельным работам. Томск, ТУСУР, 2012. 20 с. Электронный ресурс http://edu.tusur.ru/training/publications/1516.
- 2. Силич М.П. Теория систем и системный анализ. Методические указания по выполнению практических и самостоятельных работ. Томск, ТУСУР, 2012. 25 с. Электронный ресурс http://edu.tusur.ru/training/publications/670.
- 3. Ярушкина Н.А. Теория систем и системный анализ. Учебно-методическое пособие. Томск, ТУСУР, 2007. 26 с. Электронный ресурс http://edu.tusur.ru/training/publications/297.

12.3 Учебно-методические пособия и программное обеспечение

- 1. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению лабораторных работ. Томск, ТУСУР, 2015. 6 с. Электронный ресурс https://edu.tusur.ru/training/publications/5037.
- 2. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению практических работ. Томск, ТУСУР, 2015. 11 с. Электронный ресурс https://edu.tusur.ru/training/publications/5038.

3. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению курсовой работы и организации самостоятельной подготовки. – Томск, ТУСУР, 2015. – 16 с. Электронный ресурс https://edu.tusur.ru/training/publications/5039.

13. Методические рекомендации по организации изучения дисциплины

- 13.1 В преподавании используются учебное пособие [1] из списка основной литературы. Пособие содержат дополнительный теоретический материал, необходимый для самостоятельной работы. Самостоятельная работа студентов проводится в соответствие с методическим пособием (см. п. 12.3.3).
- 13.2 Преобразование суммы баллов в традиционную оценку происходит один раз в конце семестра только после подведения итогов изучения дисциплины.
- 13.3 Для стимулирования планомерности работы студента в семестре в раскладку баллов по элементам контроля введен компонент своевременности, который применяется только для студентов без опозданий отчитывающихся по предусмотренным элементам контроля.
- 13.4 На протяжении всего семестра текущая успеваемость оценивается в баллах нарастающим итогом.
- 13.5 Независимо от набранной в семестре текущей суммы баллов обязательным условием является выполнение студентом необходимых по рабочей программе видов занятий: выполнение контрольных работ, выполнение лабораторных работ.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по учебной работе

_ П.Е.Троян 2016 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Проектирование сложных систем (наименование учебной дисциплины)

Уровень основной образовательной программы

магистратура

(бакалавриат, магистратура, специалитет)

Направление(я) подготовки (специальность) 11.04.04 «Электроника и наноэлектроника»

(полное наименование направления подготовки (специальности))

Профиль(и) «Конструирование и производство бортовой космической радиоаппаратуры» (полное наименование профиля направления подготовки (специальности))

очная Форма обучения

(очная, очно-заочная (вечерняя), заочная)

Факультет Радиоконструкторский (РКФ)

(сокращенное и полное наименование факультета)

Кафедра Конструирования и производства радиоаппаратуры (КИПР)

(сокращенное и полное наименование кафедры)

Kype 1

Семестр 1

Учебный план набора 2016 года и последующих лет.

Экзамен 1 семестр Курсовая работа 1 семестр

Томск 2016

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины и представляет собой совокупность контрольно-измерительных материалов (КИМ) (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ПК-8	способностью проектировать устройства, приборы и системы электронной техники с учетом заданных требований	Должен знать номенклатуру современных устройств, приборов и систем электронной техники. Должен уметь проектировать устройства,
ПК-14	готовностью осуществлять авторское сопровождение разрабатываемых устройств, приборов и системы электронной техники на этапах проектирования и производства	приборы и системы электронной техники с учетом заданных требований. Должен владеть приемами авторского сопровождения разрабатываемых устройств, приборов и систем электронной техники.

2. Реализация компетенций

Для формирования компетенции необходимо осуществить ряд этапов, содержание которых детализировано в таблице 2.

ПК-8: способностью проектировать устройства, приборы и системы электронной техники с учетом заданных требований.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	- методы системного анализа устройств, приборов и систем электронной техники; - уровень мировых достижений в проектировании и технологии устройств, приборов и систем электронной техники	- разрабатывать математические модели процессов и объектов, методы их исследования, выполнять их сравнительный анализ	- способами формализации интеллектуальных задач с учетом заданных требований
Виды занятий	- лекции; - практические заня- тия; - групповые консуль- тации	- лабораторные ра- боты; - выполнение до- машнего задания; - самостоятельная	- лабораторные ра- боты; - выполнение твор- ческого задания

		работа студентов	
Используемые средства оце- нивания	- тест; - контрольная работа; - выполнение индивидуального домашнего задания; - экзамен	- оформление и за- щита лабораторных работ; - оформление и сда- ча индивидуального домашнего задания; - конспект самосто- ятельной работы	- защита лабора- торных работ; - презентация ре- зультатов творче- ского задания; - экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Показатели и характеристики критериев оценивания компетенции на этапах

Показатели и кри- терии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уро- вень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при пря- мом наблюдении

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Tuominga Talokasatem in Kontephin oqembanini Komtetengini na Stanax				
Показатели и критерии	Знать	Уметь	Владеть	
Отлично (высо- кий уровень)	- знает методы си- стемного анализа, четко определяет потребность и проблемную ситу- ацию при анализе	- умеет разрабатывать математические модели процессов и объектов, проводит сравнительный анализ самостоятельно	- владеет способами формализации интеллектуальных задач	

	процессов и объектов; - следит за тенденциями развития сложных технических систем и применяет полученные знания на практике		
Хорошо (базо- вый уровень)	- анализирует методы системного анализа и применяет их, после консультации с преподавателем; - знаком с тенденциями развития сложных технических систем и имеет представление о новых технологиях и методах проектирования сложных систем	- самостоятельно применяет методики по разработки математических моделей процессов и объектов	- владеет основными способами формализации интеллектуальных задач
Удовлетвори- тельно (порого- вый уровень)	- знаком с методами системного анализа и под контролем преподавателя применяет их; - получает информацию о тенденциях развития сложных технических систем из журналов и специальной литературы	- умеет проводить ис- следования математиче- ских моделей процессов и объектов под контро- лем преподавателя, ис- пользует разработанные модели для сравнитель- ного анализа	- знаком с некоторыми способами формализации интеллектуальных задач и применяет их на практике

Для формирования компетенции необходимо осуществить ряд этапов, содержание которых детализировано в таблице 5.

ПК-14: готовностью осуществлять авторское сопровождение разрабатываемых устройств, приборов и системы электронной техники на этапах проектирования и производства.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав Знать	Уметь	Владеть
--------------	-------	---------

Содержание этапов	- методику авторского сопровождения разра- батываемых устройств, приборов и систем электронной техники	- выполнять ком- плексное проекти- рование электрон- ных средств (схема- конструкция- технология)	- современными средствами проектирования конструкций и технологических процессов производства электронных средств
Виды занятий	- групповые консуль- тации	- курсовая работа; - самостоятельная работа студентов	- курсовой работа; - выполнение твор- ческого задания
Используемые средства оце- нивания	- выполнение этапов курсовой работы; - защита курсовой работы	- оформление и за- щита курсовой ра- боты	- презентация ре- зультатов творче- ского задания; - защита курсовой работы

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 – Показатели и характеристики критериев оценивания компетенции на этапах

Показатели и кри- терии	Знать	Уметь	Владеть	
Отлично (высокий уровень)	· I IIDE/IEIIAX ИЗУЧАЕМОЙ I		Контролирует работу, проводит оценку, совершенствует действия работы	
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем	
Удовлетворительно (пороговый уровень) Обладает базовыми общими знаниями		Обладает основными умениями, требуе- мыми для выполнения простых задач	Работает при пря- мом наблюдении	

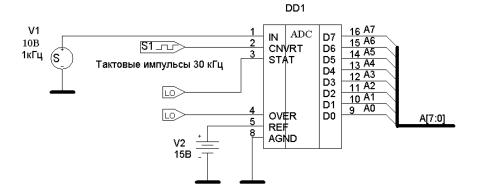
Таблица 7 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть	
Отлично (высо- кий уровень)	- генерирует идеи и самостоятельно реализует их при проектировании сложных систем	- умеет самостоятельно выполнять комплексное проектирования электронных средств	- свободно владеет современными средствами проектирования конструкций и технологических процессов производства электронных средств	
Хорошо (базо- вый уровень)	- после обсуждения нескольких идей с преподавателем самостоятельно реализует их при проектировании сложных систем	- пользуется консульта- циями у преподавателя при комплексном про- ектировании электрон- ных средств	- владеет основными современными сред- ствами проектирования конструкций и техно- логических процессов производства элек- тронных средств	
Удовлетвори- тельно (порого- вый уровень) - под контролем преподавателя осуществляет про- ектирование сложных систем		- под контролем преподавателя получает навыки комплексного проектирования электронных средств	- владеет некоторыми современными сред- ствами проектирования конструкций и техно- логических процессов производства элек- тронных средств	

3. Типовые контрольные задания

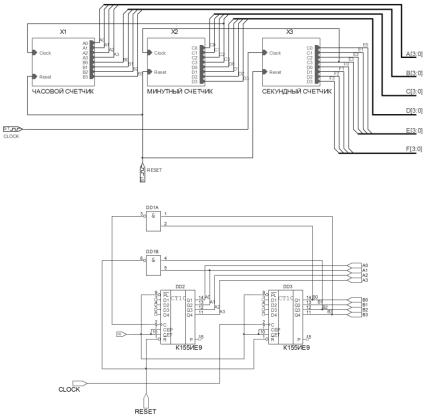
Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенции ПК-8 в процессе освоения образовательной программы, в составе:

- 1. Тест.
- 2. Контрольная работа.
- 3. Выполнение домашнего задания.
- 4. Темы лабораторных работ.
- 5. Темы для самостоятельной работы.
- 6. Экзаменационные вопросы.


3.1 Тест

- 1. Является ли системный анализ новой всеобщей методологией науки?
- а) нет, не является;
- б) да, является;
- в) является, но только в технических науках;
- г) является, но только в гуманитарных науках.
- 2. Для чего не может использоваться системный анализ?
- а) исследование отдельной отрасли производства;

- б) исследование промышленного предприятия;
- в) исследование радиоэлектронного прибора;
- г) исследование электрорадиоэлемента.
- 3. Как можно определить системный анализ в проектировании?
- а) как научную дисциплину;
- б) как методологию анализа технических объектов;
- в) как алгоритм исследователя для достижения поставленной цели;
- г) как перечень рекомендаций эмпирического характера.
- 4. Что не является этапом в системном анализе при проектировании технического объекта?
 - а) постановка задачи;
 - б) структуризация изучаемой системы;
 - в) интеграция изучаемой системы;
 - г) моделирование изучаемой системы.
 - 5. Что понимается под замкнутой системой в системном анализе?
- а) система, на которую влияние внешней среды не оказывает существенного воздействия;
 - б) система, у которой выходной сигнал подается на вход;
 - в) система, изолированная от других систем технических объектов;
 - г) система, обладающая устойчивым динамическим равновесием.
- 6. Рассматриваются бытовые радиоэлектронные устройства для записи информации:
 - катушечный магнитофон;
 - кассетный магнитофон;
 - видеомагнитофон;
 - CD-рекордер;
 - DVD-рекордер;
 - HDD-рекордер.


Какой подход наиболее приемлем для изучения данных технических систем?

- а) компонентный;
- б) структурный;
- в) генетический;
- г) функциональный.
- 7. Рассматривается техническая система «восьмиразрядный аналого-цифровой преобразователь».

Как можно классифицировать с позиций системного анализа источник опорного напряжения V2?

- а) выходной сигнал;
- б) внешнее воздействие;
- в) ресурсы;
- г) входной сигнал.
- 8. На рисунке представлены схема электрических часов и подсхема часового счетчика.

Как можно охарактеризовать подсхему часового счетчика по отношению к схеме электронных часов?

- а) «черный ящик»;
- б) «белый ящик»;
- в) элемент;
- г) узел.
- 9. Назовите основные виды внутренних противоречий, возникающих в процессе взаимодействия систем.
 - а) логические и технические;
 - б) физические и научные;
 - в) моральные и материальные;
 - г) технические и физические.
 - 10. Что называют компонентом системы?
- а) часть, которая может быть выделена как автономное, самостоятельное образование;
 - б) группа характерных для данной системы параметров среды;
 - в) граф;
 - г) любой элемент этой системы.

3.2 Контрольная работа

Контрольная работа №1. Рассматривается некоторая матрица смежности при сравнении вариантов технических решений.

	X1	X2	X3	X4	X5	X6	X7
X1	1.0	0.5	1.0	1.5	1.0	0.5	1.0
X2	1.5	1.0	1.5	1.5	1.0	1.0	0.5
X3	1.0	0.5	1.0	0.5	0.5	1.0	1.0
X4	0.5	0.5	1.5	1.0	1.5	1.5	1.5
X5	1.0	1.0	1.5	0.5	1.0	1.0	0.5
X6	1.5	1.0	1.0	0.5	1.0	1.0	0.5
X7	1.0	1.5	1.0	0.5	1.5	1.5	1.0

Какой номер варианта имеет минимальную сумму оценок?

Контрольная работа №2. Рассматривается фрагмент матрицы смежности при сравнении вариантов технических решений.

	Абсолютный	
	показатель	
X1	51.5	
X2	67.5	
X3	67.5	
X4	51.5	
X5	76.5	
X6	55.25	
X7	58.5	
X8	56.5	

Чему равен относительный показатель у седьмого варианта технического решения?

3.3 Выполнение домашнего задания

Домашнее задание №1. Главный показатель для оценки эффективности акустической системы – это мощность. Масса некоторой акустической системы составляет 17.6 кг, а интегральный критерий расхода материалов равен 0.2 кг/Вт.

Чему равна мощность такой акустической системы?

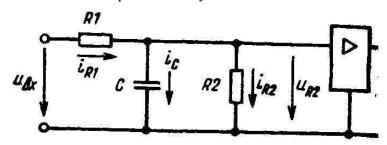
Домашнее задание №2. Критерий использования материалов при изготовлении шкива ременной передачи составляет 0.4. Масса заготовки составляет 2.3 кг.

Чему равна масса изделия?

Домашнее задание №3. Рассматривается возможность изготовления бытовых DVDплейеров на одном из Томских предприятий радиотехнического профиля. Результаты технико-экономического обоснования:

- количество стандартных элементов 50 (весовой коэффициент 1);
- количество заимствованных элементов -20 (весовой коэффициент -0.7);

- количество новых элементов, изготовляемых без затруднений -35 (весовой коэффициент -0.5);
- количество новых элементов, изготовляемых с затруднениями -10 (весовой коэффициент -0.3).

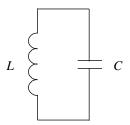

Элементов, которые невозможно изготовить, не имеется.

Чему равен критерий технологических возможностей по изготовлению DVD-плейеров?

Домашнее задание №4. В качестве показателя эффективности Q для оценки прогрессивного развития бытовых видеокамер выбран их вес в граммах.

Определить суммарную трудоемкость (количество месяцев) проектирования современной видеокамеры, если известно, что вес лучших образцов составляет 400 г, а критерий трудоемкости для них составляет 0.0175 месяцев/грамм.

Домашнее задание №5. На рисунке представлена система управления, состоящая из апериодического RC-звена и безынерционного усилителя.

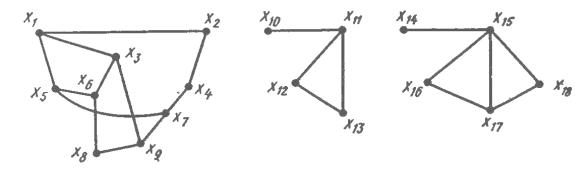

Известно, что R1 = 1 кОм; R2 = 7 кОм; C = 3 мкФ.

Определить постоянную времени апериодического звена.

Домашнее задание №6. При изменении напряжения питания коэффициент усиления интегрального усилителя типа K140УД6 изменяется от $4.5 \cdot 10^3$ до $6 \cdot 10^3$.

Используя детерминированную математическую модель, требуется вычислить относительное изменение коэффициента усиления.

Домашнее задание №7. На рисунке представлена простейшая динамическая модель – электрический колебательный контур.



Известно, что период колебаний составляет 4 мс, а емкость контура 10 мкФ. Требуется определить индуктивность колебательного контура.

Домашнее задание №8. Техническая система РЭС подвергнута декомпозиции на две подсистемы. Исходная система имела n=4 входа и m=3 выхода. Коэффициент трудоемкости синтеза $\gamma=2$. Количество связей от первой подсистемы ко второй k=1; от второй к первой q=5. Требуется определить меру сложности декомпозиции такой системы.

Домашнее задание №9. Рассматривается некоторая техническая система в виде «черного ящика». Известно, что система имеет 4 входа и 3 выхода. Коэффициент трудоемкости синтеза $\gamma = 2$. Вычислить меру сложности декомпозиции такой системы.

Домашнее задание №10. На рисунке представлен несвязный граф.

Определить ранг представленного графа, если известно, что ранг — это разность между числом вершин графа и числом компонент связности.

3.4 Темы лабораторных работ

Работа №1. Законы развития технических систем.

Работа №2. Методы разрешения противоречий в технических системах.

Работа №3. Морфологический анализ вариантов технического решения.

Работа №4. Функционально-стоимостной анализ в задачах оптимизации.

3.5 Темы для самостоятельной работы

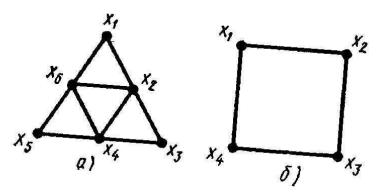
Тема №1. Противоречия в технических системах.

Тема №2. Структурный и функциональный подход в исследовании систем РЭС.

Тема №3. Теоретические основы моделирования систем РЭС.

Тема №4. Способы соединения звеньев системы.

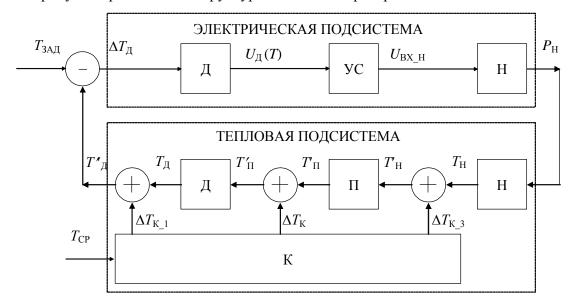
Тема №5. Антропологические критерии.


Тема №6. Экспериментальный метод исследования.

Тема №7. Использование теории решения изобретательских задач.

3.6 Экзаменационные вопросы

Билет №1.


- 1. Общая теория систем, функции технической системы, конструктивные уровни РЭС, структурная модель РЭС. Противоречия в технических системах.
 - 2. На рисунке представлены два графа некоторой технической системы.

Какая геометрическая фигура получится путем вычитания графов $X = X_1 \setminus X_2$?

Билет №2.

- 1. Совокупность параметров среды, параметры РЭС, компоненты системы. Структурный и функциональный подход в исследовании систем РЭС.
 - 2. На рисунке представлена структурная схема микротермостата.

Сколько узлов в представленной схеме с точки зрения системного анализа?

Билет №3.

- 1. Физические модели, символические модели, словесно-описательные модели, математические модели, аналитические модели, имитационные модели, структурные модели, функциональные модели, формальные модели, теоретические модели. Теоретические основы моделирования систем РЭС.
- 2. Техническая система РЭС подвергнута декомпозиции на две подсистемы четырьмя разными вариантами. При этом получены следующие значения количества связей от первой подсистемы ко второй k и от второй к первой q:
 - 1. вариант 1: k = 5; q = 7;
 - 2. вариант 2: k = 9; q = 1;
 - 3. вариант 3: k = 2; q = 2;
 - 4. вариант 4: k = 1; q = 2.

Какой из вариантов декомпозиции системы можно считать оптимальным.

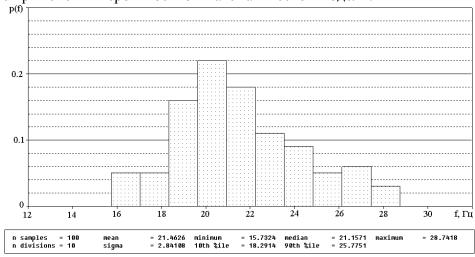
Билет №4.

- 1. Виды управления по отклонению, типовые динамические звенья. Способы соединения звеньев системы.
- 2. Рассматривается сосредоточенная в пространстве модель процесса теплопередачи корпуса РЭС. Известно, что тепловое сопротивление корпуса 0.1 °C/Вт; температура внутри блока 25 °C; температура вне корпуса 60 °C.

Определить мощность теплового потока, действующего на корпус с внешней стороны.

Билет №5.

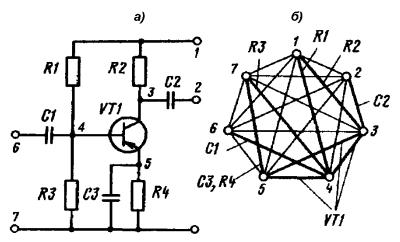
- 1. Функциональные критерии, технологические критерии, экономические критерии. Антропологические критерии.
- 2. В аналитической форме дискретная во времени модель аналого-цифрового преобразователя имеет вид:


$$D_i = \left[\frac{N \cdot U_{ex}(t)}{U_{onop}}\right],$$

где D_i — десятичный эквивалент шестнадцатиричного числа на выходной шине данных; результат в квадратных скобках — округление до ближайшего целого числа; N - максимальное число для данного количества разрядов; $U_{\rm BX}(t)$ — значение входного сигнала в момент времени t; $U_{\rm onop}$ — значение опорного напряжения АЦП.

Чему будет равно число N, если моделируется 16-разрядный аналого-цифровой преобразователь?

Билет №6.


- 1. Теоретический метод исследования. Экспериментальный метод исследования.
- 2. На рисунке представлена гистограмма плотности вероятности, которую получили в результате применения вероятностной математической модели.

Если выразить высоту столбцов в относительных единицах, то чему будет равна сумма высот?

Билет №7.

- 1. Метод мозговой атаки, метод эвристических приемов, морфологический анализ, функционально-стоимостной анализ. Использование теории решения изобретательских задач.
 - 2. На рисунке представлен граф схемы РЭС.

К какому виду моделей относится данное представление?

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенции ПК-14 в процессе освоения образовательной программы, в составе:

- 1. Темы для самостоятельной работы.
- 2. Темы курсовой работы.

3.7 Темы для самостоятельной работы

- Тема №1. Противоречия в технических системах.
- Тема №2. Структурный и функциональный подход в исследовании систем РЭС.
- Тема №3. Теоретические основы моделирования систем РЭС.
- Тема №4. Способы соединения звеньев системы.
- Тема №5. Антропологические критерии.
- Тема №6. Экспериментальный метод исследования.
- Тема №7. Использование теории решения изобретательских задач.

3.8 Темы курсовой работы

Курсовая работа посвящена синтезу дескриптивной модели сложной системы с использованием фонда физико-технических эффектов (ФТЭ).

Общее задание на курсовую работу формулируется следующим образом: синтезировать дескриптивную модель сложной системы, в основу которой положен определенный вариантом задания физико-технический эффект. Исходными данными являются параметры входа A, выхода C, а также внутренняя структура объекта B.

Варианты физико-технических эффектов для выполнения курсовой работы:

- 1. Закон Ома.
- 2. Закон Джоуля-Ленца.
- 3. Эффект Зеебека.
- 4. Эффект Томсона.
- 5. Эффект Пельтье.
- 6. Закон Био-Савара-Лапласа.
- 7. Сверхпроводимость.
- 8. Тензорезистивный эффект.

- 9. Вторичная электронная эмиссия.
- 10. Эффект Ганна.

4. Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Методические материалы приведены в рабочей программе «Проектирование сложных систем» в разделах:

- 4.1 Основная литература:
- 1. Алексеев В.П., Озеркин Д.В. Системный анализ и методы научно-технического творчества / Учебное пособие. Томск, ТУСУР, 2015. 325 с.
 - 4.2 Дополнительная литература:
- 1. Цой Ю.Р. Теория систем и системный анализ. Методические указания по практическим самостоятельным работам. Томск, ТУСУР, 2012. 20 с.
- 2. Силич М.П. Теория систем и системный анализ. Методические указания по выполнению практических и самостоятельных работ. Томск, ТУСУР, 2012. 25 с.
- 3. Ярушкина Н.А. Теория систем и системный анализ. Учебно-методическое пособие. Томск, ТУСУР, 2007. 26 с.
 - 4.3 Учебно-методические пособия и программное обеспечение
- 1. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению лабораторных работ. Томск, ТУСУР, 2015. 6 с.
- 2. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению практических работ. Томск, ТУСУР, 2015. 11 с.
- 3. Озеркин Д.В. Проектирование сложных систем / Методические указания по выполнению курсовой работы и организации самостоятельной подготовки. Томск, ТУСУР, 2015. 16 с.