МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖД	,АЮ
Директор депа	ртамента с	бразования
		П.Е. Троян
«19»	12	2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Промышленная электроника

Форма обучения: заочная (в том числе с применением дистанционных образовательных технологий)

Факультет: Факультет дистанционного обучения (ФДО) Кафедра: Кафедра промышленной электроники (ПрЭ)

Курс: **2** Семестр: **3**

Учебный план набора 2019 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	3 семестр	Всего	Единицы
Лабораторные занятия	8	8	часов
Самостоятельная работа	145	145	часов
Самостоятельная работа под руководством преподавателя	14	14	часов
Контрольные работы	4	4	часов
Подготовка и сдача экзамена	9	9	часов
Общая трудоемкость	180	180	часов
(включая промежуточную аттестацию)		5	3.e.

Формы промежуточной аттестация	Семестр	Количество
Экзамен	3	
Контрольные работы	3	2

Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Троян П.Е.

Должность: Директор департамента образования

Дата подписания: 19.12.2018 Уникальный программный ключ: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

1. Общие положения

1.1. Цели дисциплины

1. Целями преподавания дисциплины «Теоретические основы электротехники» являются обеспечение базовой подготовки в области электротехнических знаний и освоение методов решения задач анализа и расчета характеристик электрических цепей.

1.2. Задачи дисциплины

1. Приобретение основ электротехнических знаний для освоения специальных дисциплин.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Базовые основы электроники.

Индекс дисциплины: Б1.В.02.01.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

T/	Индикаторы достижения	Планируемые результаты обучения по			
Компетенция	компетенции	дисциплине			
Универсальные компетенции					
Общепрофессиональные компетенции					

	T	L
ОПК-3. Способен	ОПК-3.1. Знает принципы	Знание фундаментальных законов, понятий
применять методы	поиска, хранения,	и положений основ теории электрических
поиска, хранения,	обработки, анализа и	цепей.
обработки, анализа и	представления информации,	
представления в	а также методы и средства	
требуемом формате	обеспечения	
информации из	информационной	
различных источников	безопасности	
и баз данных, соблюдая	ОПК-3.2. Умеет работать с	Умение рассчитывать линейные
при этом основные	источниками информации и	пассивные, активные цепи методами на
требования	базами данных, а также	основе законов электротехники.
информационной	решать задачи обработки	-
безопасности	данных с помощью	
	современных средств	
	автоматизации	
	ОПК-3.3. Владеет	Владение методами анализа цепей
	практическими навыками	постоянных и переменных токов во
	поиска, хранения,	временной и частотной областях.
	обработки, анализа и	bpeweimon in factorinon condensa.
	представления в требуемом	
	формате необходимой	
	информации и обеспечения	
	информационной	
	безопасности при решении	
	задач в области	
	профессиональной	
	деятельности	
	Профессиональные к	омпетеннии
ПКС-1. Способен	ПКС-1.1. Знает основные	Знание важнейших свойств и
использовать основные	1	характеристик цепей, основы расчета
приемы обработки и	представления	частотных характеристик, периодических
представления	экспериментальных и	режимов.
экспериментальных	расчетных данных приборов	
данных	и устройств электронной	
	техники	
	ПКС-1.2. Умеет проводить	Умение проводить обработку цепей
	обработку	методами контурных токов, узловых
	экспериментальных данных	потенциалов, наложения и определять
	приборов и устройств	основные характеристики процессов при
	электронной техники	стандартных и произвольных
		воздействиях.
	ПКС-1.3. Владеет	Владение методами анализа цепей
	методикой обработки и	постоянных и переменных токов во
	представления	временной и частотной областях.
	экспериментальных и	•
	расчетных данных приборов	
	и устройств электронной	
	техники	

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем

и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Виды учебной деятельности		Семестры
		3 семестр
Контактная аудиторная работа обучающихся с преподавателем, всего	26	26
Лабораторные занятия	8	8
Самостоятельная работа под руководством преподавателя	14	14
Контрольные работы	4	4
Самостоятельная работа обучающихся, в т.ч. контактная	145	145
внеаудиторная работа обучающихся с преподавателем, всего		
Самостоятельное изучение тем (вопросов) теоретической части	125	125
дисциплины		
Подготовка к контрольной работе	8	8
Подготовка к лабораторной работе	8	8
Написание отчета по лабораторной работе	4	4
Подготовка и сдача экзамена	9	9
Общая трудоемкость (в часах)	180	180
Общая трудоемкость (в з.е.)	5	5

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Лаб. раб.	Контр. раб.	СРП, ч.	Сам. раб.,	Всего часов (без промежуточной аттестации)	Формируемые компетенции
		3	в семес	гр		
1 Цепи постоянного тока	4	4	4	55	67	ОПК-3, ПКС-1
2 Цепи однофазного синусоидального тока	4		7	78	89	ОПК-3, ПКС-1
3 Трехфазные цепи	-		1	4	5	ОПК-3, ПКС-1
4 Периодические несинусоидальные токи	-		1	4	5	ОПК-3, ПКС-1
5 Теория четырехполюсника. Фильтры	-		1	4	5	ОПК-3, ПКС-1
Итого за семестр	8	4	14	145	171	
Итого	8	4	14	145	171	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины		Формируемые компетенции			
3 семестр						

1 Цепи постоянного	Элементы электрических цепей и схем, Закон	4	ОПК-3, ПКС-1
тока	Ома для цепи с ЭДС, Законы Кирхгофа,	4	011K-3, 11KC-1
TORU	Метод контурных токов, Метод узловых		
	потенциалов, Преобразование схем с		
	переносом источника, Метод двух узлов,		
	Метод наложения. Преобразование схем,		
	Метод эквивалентного генератора, Метод		
	пересчёта, Теорема компенсации, Передача		
	энергии в нагрузку		
	Итого	4	
2 Цепи однофазного	Переменный ток и его основные	7	ОПК-3, ПКС-1
синусоидального тока	характеристики, Изображение	,	01111 0, 11110 1
ondwizher e renw	синусоидальных функций векторами и		
	комплексными числами, Элементы цепей		
	переменного тока, Основы символического		
	метода, Активная, реактивная и полная		
	мощности, Явление резонанса, Цепи с		
	взаимной индуктивностью, Передача энергии		
	в нагрузку на переменном токе		
	Итого	7	
3 Трехфазные цепи	Основные понятия. Расчет трехфазных цепей.	1	ОПК-3, ПКС-1
r r r · · ·	Активная, реактивная и полная мощности		, -
	трехфазной системы. Указатель		
	последовательности чередования фаз.		
	Получение кругового вращающегося		
	магнитного поля		
	Итого	1	
4 Периодические	Расчет линейных цепей с несинусоидальными	1	ОПК-3, ПКС-1
несинусоидальные	токами. Резонансные явления при		
токи	несинусоидальных токах. Особенности		
	работы трехфазных систем, вызываемые		
	гармониками, кратными трем		
	Итого	1	
5 Теория	Основы теории пассивного	1	ОПК-3, ПКС-1
четырехполюсника.	четырехполюсника. Основы теории		
Фильтры	электрических фильтров		
	Итого	1	
	Итого за семестр	14	
	Итого	14	

5.3. Контрольные работы

Виды контрольных работ и часы на контрольные работы приведены в таблице 5.3. Таблица 5.3 – Контрольные работы

№ п.п.	Виды контрольных работ	Трудоемкость, ч	Формируемые компетенции
		3 семестр	
1	Контрольная работа	2	ОПК-3, ПКС-1
2	Контрольная работа	2	ОПК-3, ПКС-1
	Итого за семестр	4	
	Итого	4	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4.

Таблица 5.4 – Наименование лабораторных работ

Названия разделов (тем) дисциплины	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	3 семестр		
1 Цепи постоянного тока Экспериментальная проверка токораспределения в разветвленных цепях постоянного		4	ОПК-3, ПКС-1
	тока		
	Итого	4	
2 Цепи однофазного	Исследование цепей на	4	ОПК-3, ПКС-1
синусоидального тока	переменном синусоидальном токе		
	Итого	4	
	Итого за семестр	8	
	Итого	8	

5.5.Контроль самостоятельной работы (курсовой проект / курсовая работа)

Не предусмотрено учебным планом

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной		Формируемые	
(тем) дисциплины	работы	Ч	компетенции	Формы контроля
	3 c	еместр		
1 Цепи постоянного	Самостоятельное	45	ОПК-3, ПКС-1	Тестирование,
тока	изучение тем			Экзамен
	(вопросов)			
	теоретической части			
	дисциплины			
	Подготовка к	4	ОПК-3, ПКС-1	Контрольная
	контрольной работе			работа
	Подготовка к	4	ОПК-3, ПКС-1	Лабораторная
	лабораторной работе			работа
	Написание отчета по	2	ОПК-3, ПКС-1	Отчет по
	лабораторной работе			лабораторной
				работе
	Итого	55		

2 Цепи однофазного синусоидального	Самостоятельное изучение тем	68	ОПК-3, ПКС-1	Тестирование, Экзамен
тока	(вопросов) теоретической части дисциплины			
	Подготовка к лабораторной работе	4	ОПК-3, ПКС-1	Лабораторная работа
	Написание отчета по лабораторной работе	2	ОПК-3, ПКС-1	Отчет по лабораторной работе
	Подготовка к контрольной работе	4	ОПК-3, ПКС-1	Контрольная работа
	Итого	78		
3 Трехфазные цепи	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	4	ОПК-3, ПКС-1	Тестирование, Экзамен
	Итого	4		
4 Периодические несинусоидальные токи	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	4	ОПК-3, ПКС-1	Тестирование, Экзамен
	Итого	4		
5 Теория четырехполюсника. Фильтры	Самостоятельное изучение тем (вопросов) теоретической части дисциплины	4	ОПК-3, ПКС-1	Тестирование, Экзамен
	Итого	4		
	Итого за семестр	145		
	Подготовка и сдача экзамена	9		Экзамен
	Итого	154		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.7.

Таблица 5.7 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Фартамичата	Виды учебной деятельности			ности		
Формируемые компетенции	Лаб. раб.	Конт.Раб.	СРП	Сам. раб.	Формы контроля	
ОПК-3	+	+	+	+	Контрольная работа, Лабораторная работа,	
					Отчет по лабораторной работе,	
					Тестирование, Экзамен	

ПКС-1	+	+	+	+	Контрольная работа, Лабораторная работа,
					Отчет по лабораторной работе,
					Тестирование, Экзамен

6. Рейтинговая система для оценки успеваемости обучающихся

Рейтинговая система не используется

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Коновалов Б. И. Теоретические основы электротехники: Учебное пособие / Коновалов Б. И. - Томск: ФДО ТУСУР, 2016. — 158 с. Доступ из личного кабинета студента. [Электронный ресурс]: — Режим доступа: https://study.tusur.ru/study/library.

7.2. Дополнительная литература

1. Теоретические основы электротехники. Часть 2. Переходные и статические режимы в линейных и нелинейных цепях. Электромагнитное поле: Учебное пособие / Е. Б. Шандарова, А. В. Шутенков, В. М. Дмитриев, Т. В. Ганджа - 2015. 237 с. Доступ из личного кабинета студента. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/5377.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Коновалов Б. И. Теоретические основы электротехники. Часть 1: Учебно-методическое пособие / Коновалов Б. И. Томск : ФДО ТУСУР, 2016. Ч.1. 91 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 2. Коновалов Б. И. Теоретические основы электротехники. Методические указания по организации самостоятельной работы: Методические указания / Коновалов Б. И., Михальченко С. Г. Томск: ФДО, ТУСУР, 2018. 22 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://study.tusur.ru/study/library.
- 3. Теоретические основы электротехники. Часть 1. Установившиеся режимы в линейных электрических цепях: Учебно-методическое пособие для выполнения лабораторных работ / А. В. Шутенков, Т. В. Ганджа, В. М. Дмитриев 2015. 108 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/5043.
- 4. Электротехника и электроника: Методические указания по самостоятельной работе для студентов ТУСУР по дисциплинам «Теоретические основы электротехники», «Анализ динамических систем», «Теория цепей и сигналов» / Т. В. Ганджа, В. Е. Коваленко 2015. 28 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/5045.
- 5. Сборник задач по теоретическим основам электротехники. Часть 1 Установившиеся режимы в линейных электрических цепях: Сборник задач для проведения практических занятий по дисциплинам «Теоретические основы электротехники», «Анализ динамических систем», «Теория цепей и сигналов» / А. В. Шутенков, Т. В. Ганджа, В. М. Дмитриев 2015. 96 с. Доступ из личного кабинета студента. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/5044.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Иное учебно-методическое обеспечение

1. Коновалов Б.И. Теоретические основы электротехники [Электронный ресурс]: электронный курс /Б.И. Коновалов. - Томск : ФДО ТУСУР, 2016. (доступ из личного кабинета студента) .

7.5. Современные профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Общие требования к материально-техническому и программному обеспечению дисциплины

Учебные аудитории для проведения занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, для самостоятельной работы студентов

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Веб-камера 6 шт.;
- Наушники с микрофоном 6 шт.;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- Google Chrome;
- Kaspersky Endpoint Security для Windows;
- LibreOffice:
- Microsoft Windows;

8.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.3. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Цепи постоянного тока	ОПК-3, ПКС-1	Контрольная работа	Примерный перечень тем и тестовых заданий на контрольные работы
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ
2 Цепи однофазного синусоидального тока	ОПК-3, ПКС-1	Контрольная работа	Примерный перечень тем и тестовых заданий на контрольные работы
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Отчет по лабораторной работе	Темы лабораторных работ

3 Трехфазные цепи	ОПК-3, ПКС-1	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
4 Периодические несинусоидальные токи	ОПК-3, ПКС-1	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
5 Теория четырехполюсника. Фильтры	ОПК-3, ПКС-1	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по лиспиплине

дисциплине				
Оценка	Баллы за ОМ	Формулировка требо планируем		
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	\geq 90% от	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

1 0001111111111111111111111111111111111	The state of the s	
Оценка	Формулировка требований к степени компетенции	

2	Не имеет необходимых представлений о проверяемом материале	
(неудовлетворительно)) или	
	Знать на уровне ориентирования, представлений. Обучающийся знает	
	основные признаки или термины изучаемого элемента содержания, их	
	отнесенность к определенной науке, отрасли или объектам, узнает в	
	текстах, изображениях или схемах и знает, к каким источникам нужно	
	обращаться для более детального его усвоения.	
3	Знать и уметь на репродуктивном уровне. Обучающихся знает	
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно	
	воспроизводит свои знания устно, письменно или в демонстрируемых	
	действиях.	
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на	
	репродуктивном уровне, указывать на особенности и взаимосвязи	
	изученных объектов, на их достоинства, ограничения, историю и	
	перспективы развития и особенности для разных объектов усвоения.	
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает	
	изученный элемент содержания системно, произвольно и доказательно	
	воспроизводит свои знания устно, письменно или в демонстрируемых	
	действиях, учитывая и указывая связи и зависимости между этим	
	элементом и другими элементами содержания дисциплины, его	
	значимость в содержании дисциплины.	

9.1.1. Примерный перечень тестовых заданий

- 1. Какое уравнение соответствует второму закону Кирхгофа (суммирование по k)
 - 1. $\Sigma \pm Rk$ Ik = $\Sigma \pm Ek$
 - 2. $\Sigma Rk Ik2 = \Sigma Ek Ik$
 - 3. $\Sigma \pm gk$ Uk = $\Sigma \pm Jk$
 - 4. $\Sigma \pm Ik = 0$
- 2. Найти комплексное сопротивление цепи, состоящей из двух одинаковых параллельно включенных катушек индуктивностей, если XL =20 Ом для одной катушки.
 - 1. ј10 Ом
 - 2. 20 Ом
 - 14
 - 3. ј10 Ом
 - 4. ј40 Ом
- 3. В схеме последовательно с источником гармонического напряжения включено сопротивление и катушка индуктивности. Найти полную мощность источника, если активная и реактивная мощности источника равны соответственно 20 Вт и 20 Вар.
 - 1.40 BA
 - 2. 20 BA
 - 3. 6.32 BA
 - 4. $20\sqrt{2}$ BA
- 4. Определить модуль комплексного сопротивления Z цепи, состоящей из параллельно включённых резистора и катушки индуктивности, если R =40 Ом, XL = 30 Ом.
 - $1. Z= 70 O_{M}$.
 - 2. Z = 17.14 Om.
 - $3. Z = 14,4 O_{M}.$
 - $4. Z= 24 O_{M}.$
- 5. Основные уравнения четырехполюсника связывают следующие зависимости
 - 1. Изображения Фурье входных и выходных величин.
 - 2. Входные и выходные частоты.
 - 3. Изображения по Лапласу входных и выходных величин.
 - 4. Входные и выходные величины.
- 6. Нагрузка трехфазной цепи называются равномерной, если

- 1. Равны активные сопротивления всех фаз.
- 2. Одинаковы виды нагрузок в фазах.
- 3. Равны комплексные сопротивления всех фаз.
- 4. Равны реактивные сопротивления всех фаз.
- 7. Линейно независимый контур цепи это есть:
 - 1. Любой замкнутый участок цепи.
 - 2. Замкнутый участок цепи по которому протекает один и тот же ток.
 - 3. Замкнутый участок цепи в котором присутствует хотя бы одна новая ветвь.
 - 4. Соединение трёх и более ветвей, в котором присутствует хотя бы одна новая ветвь.
- 8. Определить активное R и модуль комплексного сопротивления Z двухполюсника, если значение на его выводах U=100~B,~I=5~A,~a сдвиг фаз между этими напряжением и током $\phi=60^{\circ}$.
 - 1. Z = 17,32 Om; R = 10 Om.
 - 2. Z =20 Ом; R= 17,32 Ом.
 - $3. Z = 10 O_{M}; R = 8,66 O_{M}.$
 - 4. Z = 20 Om; R= 10 Om.
- 9. При расчете переходного процесса в цепи получены значения токов и напряжений на эле-

ментах: iR(0), iL(0), iC(0), uR(0), uL(0), uC(0). Какие из них относятся к независимым начальным

условиям (ННУ)?

- 1. iR(0), uR(0),.
- 2. iL(0), uC(0).
- 3. iL(0), uL(0).
- 4. iC(0), uC(0).
- 10. Синусоидальный ток изменяется по закону i(t)=1.41 Sin(6280 t+45°). Определить период Т и действующее значение тока I.
 - 1. T = 0.002 c, I = 0.7A.
 - 2. T = 0.0025 c, I = 1.41A.
 - 3, T = 0.000159 c, I = 1A.
 - 4. T = 0.001 c, I = 1 A.
- 11. Найти напряжение U на зажимах цепи состоящей из последовательно включённого резистора R1 к двум параллельно включенным резисторам R2 и R3. Если R1= 5 Ом, R2=R3= 10 Ом, I3=1 A.
 - 1. 15B
 - 2. 10B
 - 3. 20B
 - 4. 5B
- 12. Чему равно внутреннее сопротивление Rвн. источника ЭДС E, к которому подключено сопротивление R на котором падает напряжение U
 - 1. $R_{BH} = E/R$
 - $2. R_{BH} = U/R$
 - 3. $R_{BH} = (E-U)R/U$
 - 4. $R_{BH} = (E+U)/R$
- 13. Сколько уравнений следует записать по 1-му закону Кирхгофа для цепи, включающей 2 узла и 4 ветви?
 - 1. 1.
 - 2. 2.
 - 3. 3.
 - 4. 4.
- 14. Между двух узлов, потенциалы которых ϕ 1, ϕ 2 известны, находятся последовательно расположенные элементы: сопротивление R, источник ЭДС E, емкость C. Как записать закон Ома для ветви?
 - 1. I = E/R
 - 2. $I = (\phi 1 \phi 2 \pm E)/(R + jXL)$
 - 3. $I = (\phi 1 \phi 2)/R$
 - 4. $I = (\phi 1 \phi 2 \pm E)/(R jXL)$

- 15. Последовательно включены три резистора R1, R2, R3. Найти напряжение на R2, если R1=4 Ом, R2= 5 Ом, R3=1 Ом а на вход подано напряжение 50 В.
 - 1.50 B.
 - 2. 25 B.
 - 3. 5 B.
 - 4. 20B.
- 16. Чему равна начальная фаза напряжения на катушки индуктивности если начальная фаза тока в индуктивности равна 60 градусов.
 - 1. 60 градусов.
 - 2. 150 градусов.
 - 3. -30 градусов.
 - 4. 90 градусов.
- 17. Чему равна начальная фаза тока в конденсаторе если начальная фаза напряжения равна 30 градусов.
 - 1. 60 градусов.
 - 2. 120 градусов.
 - 3. -60 градусов.
 - 4. -90 градусов.
- 18. При напряжении $u(t)=141.4~Sin(628~t+\pi/6)B$, приложенного к выводам цепи с последовательно включённом резистор и катушкой индуктивности, и если R=6~Om, XL=8~Om, определить действующее значение тока I, угол сдвига фаз между напряжением и током ϕ и значение индуктивности L.
 - 1. I=14,14 A; $\phi=53,13$ град. ; L=78,5 Гн.
 - 2. I=10 A; ϕ =36,87 град. ; L=95,54 мГн.
 - 3. I=10 A; ϕ =1,33 град.; L=0,2 мГн.
 - 4. I=10 A; ϕ =53,13 град. ; L=127,38 мГн.
- 19. Если в схеме три узла и пять линейно независимых контура, каким методом целесообразно решать задачу определения токов в всех ветвях цепи.
 - 1. По правилам Кирхгофа.
 - 2. Методом контурных токов.
 - 3. Методом узловых напряжений.
 - 4. Методом наложения.
- 20. Метод эквивалентного генератора применяется ...?
 - 1. Для определения тока в одной ветви цепи при изменении параметров в других ветвях.
 - 2. Для определения токов в любой ветви.
 - 3. Для определения тока в одной ветви цепи при изменении её параметров
 - 4. Для определения параметров эквивалентного генератора.

9.1.2. Перечень экзаменационных вопросов

- 1. Формулировка закона Ома для ветви с источником ЭДС (1. Ток в ветви равен U / R (U напряжение ветви, R сопротивление ветви). 2. Ток в ветви равен отношению: потенциал точки откуда вытекает ток минус потенциал точки куда втекает ток + (или -) ЭДС, и деленное на сопротивление ветви. 3. Произведение тока на сопротивление = напряжению ветви. 4. Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.)
- 2. Определение первого закона Кирхгофа. (1. Сумма мгновенных значений токов всех ветвей, соединенных в каждом из узлов моделируемой цепи, в любой момент времени равна нулю. 2. Сумма напряжений всех ветвей, входящих в любой контур цепи, в каждый момент времени равна нулю. 3. Алгебраическая сумма мгновенных значений токов всех ветвей, соединенных в каждом из узлов моделируемой цепи, в любой момент времени равна нулю. 4. Сумма падений напряжений в любом замкнутом контуре цепи, в каждый момент времени равна сумме значений ЭДС источников, действующих в этом контуре.)
- 3. Чему равно n количество уравнений по методу МКТ, если (где m число всех ветвей схемы, mит число ветвей, содержащих источники тока, k число узлов?(1. n= m-k+1-muт, 2. n= muт+k+1, 3. n= k-1+muт, 4. n= m-k.)
- 4. Как находятся токи в методе узловых напряжений после составления и решения системы

- уравнений? (1. по первому закону Кирхгофа, 2. по второму закону Кирхгофа, 3. по закону Ома, 4. по правилу растекания тока.)
- 5. К какому типу уравнений относятся уравнения, составленные по законам Кирхгофа?(1. компонентные, 2. дифференциальные, 3. топологические, 4. алгебраические)
- 6. Посредством каких электрических величин описывается идеализированная модель индуктивности? (1. Заряд q и напряжение uc, 2. Сопротивление R и ток iR, 3. ЕДС и напряжение источника, 4. Индуктивность L и ток iL.)
- 7. Запишите комплекс сопротивления нагрузки Z, если напряжение $u(t)=120\sqrt{2}\sin(\omega t+120^{\circ})$ В и ток $i(t)=4\sqrt{2}\sin(\omega t+165^{\circ})$ A.(1. Z=30ej45 2. Z=30e-j45 3. Z=-30e-j45 4. Z=-30ej45)
- 8. Чему равна эквивалентная индуктивность двух последовательно соединенных катушек L1 и L2, имеющих взаимную индуктивность M, при их согласном и встречном включениях?(
 1. Lcorл=l1+l2-2M; Lвcтp=l1+l2+2M; 2. Lcorл=l1-l2+2M; Lвстp=l1+l2-2M; 3. Lcorл=l1+l2+2M; Lвстp=l1-l2-2M; 4. Lcorл=l1+l2+2M; Lвстp=l1+l2-2M.)
- 9. Запишите условие резонанса токов в контуре, состоящем из параллельно соединенных конденсатора C и катушки с параметрами Rk и Lk для резонансной частоты.($1. \omega 0C = \omega 0Lk / (Rk2 + (\omega 0Lk)2); 2. \omega 0C = \omega 0Lk / (Rk2 (\omega 0Lk)2); 3. \omega 0C = \omega 0Lk / (Rk + (\omega 0Lk)); 4. (\omega 0C)2 = \omega 0Lk / (Rk2 + (\omega 0Lk)2))$
- 10. 10. Какими электрическими величинами описывают идеализированную модель емкости?(
 1. Заряд q и напряжение uc, 2. Сопротивление R и ток iR, 3. ЕДС и напряжение источника, 4. Индуктивность L и ток iL.)

9.1.3. Примерный перечень тем и тестовых заданий на контрольные работы

Цепи постоянного и однофазного синусоидального тока

- 1. Найти напряжение U на зажимах цепи состоящей из последовательно включённого резистора R1 к двум параллельно включенным резисторам R2 и R3. Если R1= 5 Ом, R2=R3= 10 Ом, I3=1 A (1.15B 2.10B 3.20B 4.5B)
- 2. Формулировка закона Ома для ветви с источником ЭДС (1. Ток в ветви равен U / R (U напряжение ветви, R сопротивление ветви). 2. Ток в ветви равен отношению: потенциал точки откуда вытекает ток минус потенциал точки куда втекает ток + (или -) ЭДС, и деленное на сопротивление ветви. 3. Произведение тока на сопротивление = напряжению ветви. 4. Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.)
- 3. Чему равно внутреннее сопротивление Rвн. источника ЭДС E, к которому подключено сопротивление R на котором падает напряжение U (1. Rвн = E/R 2. Rвн = U/R 3. Rвн = (E-U)R 4. Rвн = (E+U)/R)/U
- 4. Чему равно n количество уравнений по методу МКТ, если (где m число всех ветвей схемы, mит число ветвей, содержащих источники тока, k число узлов? (1. n= m-k+1-muт, 2. n= muт+k+1, 3. n= k-1+muт, 4. n= m-k.)
- 5. Сколько уравнений следует записать по 1-му закону Кирхгофа для цепи , включающей 2 узла и 4 ветви? (1.1. 2.2. 3.3. 4.4.)
- 6. Посредством каких электрических величин описывается идеализированная модель индуктивности? (1. Заряд q и напряжение uc, 2. Сопротивление R и ток iR, 3. ЕДС и напряжение источника, 4. Индуктивность L и ток iL.)
- 7. Между двух узлов, потенциалы которых ϕ 1, ϕ 2 известны, находятся последовательно расположенные элементы: сопротивление R, источник ЭДС E, емкость C. Как записать закон Ома для ветви? (1. I = E/R 2. $I = (\phi 1-\phi 2\pm E)/(R+jXL)$ 3. $I = (\phi 1-\phi 2)/R$ 4. $I = (\phi 1-\phi 2\pm E)/(R-jXL)$)
- 8. Запишите условие резонанса токов в контуре, состоящем из параллельно соединенных конденсатора C и катушки с параметрами Rk и Lk для резонансной частоты. ($1. \omega 0C = \omega 0 Lk / (Rk2 + (\omega 0 Lk)2); 2. \omega 0C = \omega 0 Lk / (Rk2 (\omega 0 Lk)2); 3. \omega 0C = \omega 0 Lk / (Rk + (\omega 0 Lk)); 4. (\omega 0C)2 = \omega 0 Lk / (Rk2 + (\omega 0 Lk)2))$
- 9. Последовательно включены три резистора R1, R2, R3. Найти напряжение на R2, если R1=4 Ом, R2= 5 Ом, R3=1 Ом а на вход подано напряжение 50 В. (1. 50 В. 2. 25 В. 3. 5 В. 4. 20В)
- 10. Чему равна начальная фаза напряжения на катушки индуктивности если начальная фаза тока в индуктивности равна 60 градусов. (1. 60 градусов. 2. 150 градусов. 3. -30 градусов. 4. 90 градусов)

Цепи постоянного тока

- 1. Определить эквивалентное сопротивление цепи R_3 , если параллельно соединенные R_1 и $R_2 = 30$ Ом последовательно соединены с $R_3 = 90$ Ом. (1. $R_3 = 10$ Ом., 2. $R_3 = 100$ Ом., 3. $R_3 = 105$ Ом., 4. $R_3 = 150$ Ом.)
- 2. Составить цепь из последовательно соединенных элементов между узлами а и b: резистора R1, источника ЕДС E1, резистора R2, источника ЕДС E2, резистора R3. Замкнуть узлы а и b. Стрелки E1 и E2 направлены к узлу b. Определить напряжение U2 на сопротивлении R2 и Vab между точками a и b, если E1 = 30 B, E2 = 10 B, R1 = 10 Ом, R2 = 6 Ом, R3 = 4 Ома. (1. V2=12 B, 2. V2=40 B, 3. V2=30 B, V2=10 B, 1. Vab=40 B, 2. Vab=30 B, 3. Vab=10 B, 4. Vab=0 B)
- 3. Для предыдущей задачи составить уравнение по 2-му закону Кирхгофа. (1. I1+I2+I3=0 2. U1+U2+U3=E1+E2 3. I1R1+I2R2+I3R3=0 4. I=(E1=E2)/(R1+R2+R3)
- 4. Составить закон Ома для последовательно соединенных элементов R1, E, R2 между узлами с d:
 - $(1. I=E/(R1+R2), 2. I=\phi 1-\phi 2+-E/(R1+R2), 3. I=(E/R1+E/R2))$
- 5. Найти напряжение U на зажимах цепи состоящей из последовательно включённого резистора R1 к двум параллельно включенным резисторам R2 и R3. Если R1= 5 Ом, R2=R3= 10 Ом, и ток по сопротивлению R3 равен I3=1 А. (1. 15 B, 2. 10 B, 3. 20 B, 4. 50 B)
- 6. Чему равно внутреннее сопротивление Rвн источника ЭДС E, к которому подключено сопротивление R на котором падает напряжение U. (1. Rвн = E/R 2. Rвн = U/R 3. Rвн = (E-U)R 4. Rвн = (ER-UR)/U)
- 7. Чему равно n количество уравнений по методу МКТ, если m- число всех ветвей схемы, mит число ветвей, содержащих источники тока, k число узлов? (1. n = m k + 1 mит, 2. n = mит+k+1, 3. <math>n = k 1 + mит, 4. n = m k.)
- 8. Сколько уравнений следует записать по 1-му закону Кирхгофа для цепи, включающей 2 узла и 4 ветви? (1. 1. 2. 2. 3. 3. 4. 4.)
- 9. Последовательно включены три резистора R1, R2, R3. Найти напряжение на R2, если R1=4 Ом, R2= 5 Ом, R3=1 Ом а на вход подано напряжение 50 В. (1. 50 В. 2. 25 В. 3. 5 В. 4. 20В)
- 10. Если в схеме три узла и пять линейно независимых контура, каким методом целесообразно решать задачу определения токов в всех ветвях цепи. (1. По правилам Кирхгофа, 2. Методом контурных токов, 3. Методом узловых напряжений, 4. Методом наложения)

9.1.4. Темы лабораторных работ

- 1. Экспериментальная проверка токораспределения в разветвленных цепях постоянного тока
- 2. Исследование цепей на переменном синусоидальном токе

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной лисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

озможностими здоровых и инвалидов				
Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки		
	материалов	результатов обучения		
С нарушениями слуха	Тесты, письменные	Преимущественно письменная		
	самостоятельные работы, вопросы	проверка		
	к зачету, контрольные работы			
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная		
	зачету, опрос по терминам	проверка (индивидуально)		
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно		
двигательного аппарата	контрольные работы, письменные	дистанционными методами		
	самостоятельные работы, вопросы			
	к зачету			
С ограничениями по	Тесты, письменные	Преимущественно проверка		
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися		
показаниям	к зачету, контрольные работы,	исходя из состояния		
	устные ответы	обучающегося на момент		
		проверки		

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ПрЭ протокол № 3 от «27 » 9 2018 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Заведующий обеспечивающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Декан ФДО	И.П. Черкашина	Согласовано, 4580bdea-d7a1-4d22- bda1-21376d739cfc
ЭКСПЕРТЫ:		
Старший преподаватель, каф. ТЭО	А.В. Гураков	Согласовано, 4bfa5749-993c-4879- adcf-c25c69321c91
Профессор, каф. ПрЭ	Н.С. Легостаев	Согласовано, 6332ca5f-c16e-4579- bbc4-ee49773dfd8d
РАЗРАБОТАНО:		
Доцент, каф. ПрЭ	А.В. Шутенков	Разработано, 9c193033-b708-4730- 9e1e-85febfbdd58a