

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

УТВЕРЖДАЮ

Проректор по учебной работе

Л. А. Боков

2015 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ "ТЕОРИЯ ТЕЛЕТРАФИКА"

Уровень основной образовательной программы - Магистратура

Направление подготовки магистра 11.04.02 "Инфокоммуникационные технологии и системы связи"

Магистерская программа подготовки: "Радиоэлектронные системы передачи информации "

Форма обучения - очная

Факультет - радиотехнический

Профилирующая кафедра: ТОР (телекоммуникаций и основ радиотехники) Выпускающая кафедра (обеспечивающая кафедра) - РТС (радиотехнических систем)

Курс - первый

Семестр - второй

Учебный план набора 2015 года и последующих лет.

Распределение рабочего времени:

№	Виды учебной работы	Семестр 8	Всего	Едини- цы
1.	Лекции	16	16	часов
2.	Лабораторные работы	нет	нет	часов
3.	Практические занятия	32	32	часов
4.	Курсовая работа	нет	нет	часов
4.	Всего аудиторных занятий	48	48	часов
5.	Из них в интерактивной форме	16	16	часов
6.	Самостоятельная работа студентов	96	946	часов
7.	Всего (без экзамена)	144	144	часов
8.	Общая трудоемкость	144	144	часов
	(в зачетных единицах)	4	4	3ET

Зачет - второй семестр

Томск, 2015

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего профессионального образования по направлению подготовки 11.04.02 Инфокоммуникационные технологии и системы связи (уровень магистратуры). Утв. приказом Министерства образования и науки РФ от 30 октября 2014 г. N 1403

Рабочая программа обсуждена на заседании кафедры РТС 01. 06. 2015 г., протокол № ___

Разработчик,

доцент кафедры РТС

Зав. обеспечивающей кафедрой РТС,

профессор

Г.С. Шарыгин

Рабочая программа согласована с факультетом, профилирующей и выпускающей кафедрами

Декан РТФ

Though,

К.Ю. Попова

Зав. профилирующей и выпускающей

кафедрой РТС

у// ЛЕ.С. Шарыгин

Эксперты:

Доцент каф. ТОР

С.И. Богомолов

Доцент каф. СРС

morof

В.А. Кологривов

1. Цели и задачи дисциплины:

Дисциплина "Теория телетрафика" (ТТ) относится к числу дисциплин базовой части Б1.Б.4 рабочего учебного плана для подготовки магистрантов по направлению 11.04.02 "Инфокоммуникационные технологии и системы связи" (специализация 11.04.02 Радиоэлектронные системы передачи информации). Целью преподавания дисциплины является изучение основных закономерностей передачи информации в цифровых телекоммуникационных системах.

Основной задачей дисциплины является формирование у магистрантов *компетенций*, позволяющих самостоятельно проводить математический анализ физических процессов в аналоговых и цифровых устройствах формирования, преобразования и обработки сигналов, оценивать реальные и предельные возможности пропускной способности и помехоустойчивости телекоммуникационных систем и сетей.

В курсе ТТ принят единый методологический подход к анализу и синтезу современных телекоммуникационных систем и устройств на основе вероятностных моделей сообщений, сигналов, помех и каналов в системах связи. Предусмотренные программой курса ТТ знания являются не только базой для последующего изучения специальных дисциплин, но имеют также самостоятельное значение для формирования магистров по направлению 11.04.02 "Инфокоммуникационные технологии и системы связи" (специализация 11.04.02 Радиоэлектронные системы передачи информации).

Место дисциплины в структуре ООП

Дисциплина TT относится к числу дисциплин базовой части Б1.Б.4 рабочего учебного плана для подготовки магистрантов по направлению 11.04.02 "Инфокоммуникационные технологии и системы связи"

Теоретической базой курса ТТ являются основные сведения из дисциплин подготовки магистров: Цифровая обработка сигналов систем связи, Формирование и обработка сигналов систем связи, Моделирование устройств и систем связи.

Минимальным требованием к «входным» знаниям, необходимым для успешного усвоении данной дисциплины, является удовлетворительное усвоение программ по указанных выше курсам.

Изучаемая дисциплина является предшествующей при изучении специальных и профилирующих дисциплин: Теория и техника передачи информации, Технологии применения инфокоммуникашионных систем и сетей, Системы и сети передачи данных, а также может быть использована при подготовке диссертационной работы.

2. Требования к результатам освоения дисциплины:

Выпускник, освоивший программу магистратуры, должен обладать следующими общепрофессиональными компетенциями:

способностью реализовывать новые принципы построения инфокоммуникационных систем и сетей различных типов передачи, распределения, обработки и хранения информации (ОПК-4);

готовностью учитывать при проведении исследований, проектировании, организации технологических процессов и эксплуатации инфокоммуникационных систем, сетей и устройств мировой опыт в вопросах технического регулирования, метрологического обеспечения и безопасности жизнедеятельности (ОПК-5);

готовностью к обеспечению мероприятий по управлению качеством при проведении проектно-конструкторских и научно-исследовательских работ, а также в организационно-управленческой деятельности в организациях отрасли в соответствии с требованиями действующих стандартов, включая подготовку и участие в соответствующих конкурсах, готовностью и способностью внедрять системы управления качеством на основе международных стандартов (ОПК-6).

В результате изучения дисциплины студент должен:

- физические и математические модели процессов и явлений, лежащих в основе принципов

3

действия телекоммуникационных систем;

- основные закономерности исторического процесса в науке и технике, этапы исторического развития радиотехники, место и значение радиосистем передачи информации в современном мире;- методологические основы и принципы современной науки;

уметь

- формулировать и решать задачи, грамотно использовать математический аппарат и численные методы для анализа и синтеза радиотехнических устройств и систем;
- готовить методологическое обоснование научных исследований и технических разработок в области радиосистем передачи информации;

владеть

- математическим аппаратом для решения задач теоретической и прикладной радиотехники, методами исследования и моделирования систем передачи информации;
- навыками методологического анализа научных исследований и их результатов.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы.

Вид учебной работы	Всего	Семестры	
	часов	2	
Аудиторные занятия (всего)	144	144	
В том числе:			
Лекции	16	16	
Лабораторные работы (ЛР)	нет	нет	
Практические занятия (ПЗ)	36	36	
Курсовая работа (КР)	нет	нет	
Самостоятельная работа (всего)	96	96	
Вид промежуточной аттестации – зачет 2 сем.	144	144	
Общая трудоемкость час	144	144	
Зачетные Единицы Трудоемкости	4	4	

5. Содержание дисциплины

5.1. Разделы дисциплин и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции, час.	Лаборат. занятия, час	Практич. Занятия, час.	Курсовой П/Р	СРС час. (без экзам.)	Всего, час. (без экзам.)	Формируемые компетенции (ОК, ПК)
1.	Введение	0.5	-	-	_	2	2,5	ОПК-4, 5, 6
2.	Потоки вызовов	0.5	-	-	-	6	6,5	ОПК-4, 5, 6
3.	Характеристики качества обслуживания	1	-	2	-	6	8	ОПК-4, 5, 6
4.	Виды систем передачи информации	2	-	2	-	20	22	ОПК-4, 5, 6
5.	Анализ коммутационных систем связи	2	-	8	-	20	28	ОПК-4, 5, 6
6.	Анализ цифровых систем с пакетной коммутацией	4	-	4	-	22	26	ОПК-4, 5, 6
7.	Фрактальные модели трафика	4		4		10	18	ОПК-4, 5, 6
8.	Алгоритмы маршрутизации в сетях связи	2		12		10	24	ОПК-4, 5, 6
	Bcero	16	-	36	-	96	144	

4

№ п/п	Наименование раздела дисциплины	Содержание раздела	Трудоемкость, час.	Формируемые компетенции (ОК, ПК)
1	Введение	Рассмотрены методы анализа цифровых систем связи. Рассматриваются как давно известные (классические) методы, основанные на марковских моделях входных и выходных информационных потоков, так и новые методы, использующие фрактальные (самоподобные) модели трафика для определения основных характеристик цифровых систем связи. В таких сетях связи как Internet, Ethernet, Telnet, трафиковые трассы имеют статистически самоподобную структуру, что обусловило важность применения фрактальных моделей при анализе цифровых систем связи.	0,5	OTÍK-4, 5, 6
2	Потоки вызовов	Основные понятия потоков вызовов. Простейший поток вызовов. Нестационарный пуассоновский поток. Поток с ограниченным последействием. Примитивный поток. Длительность обслуживания. Поток освобождений.	0,5	ОПК-4, 5, 6
3	Характеристики качества обслуживания	Нагрузка и ее виды. Измерение интенсивности обслуженной нагрузки. Распределение интенсивности нагрузки по времени и ее измерение	1	ОПК-4, 5, 6
4	Виды систем передачи информации	Система с отказами при простейшем потоке вызовов. Система с отказами при примитивном потоке вызовов. Система с ожиданием при простейшем потоке вызовов. Система с ожиданием при примитивном потоке вызовов. Система смешанного типа при простейшем потоке вызовов	2	ОПК-4, 5, 6
5	Анализ коммутационных систем связи	Виды коммутационных систем. Комбинаторный метод Якобеуса для анализа коммутационных схем. Метод расчета потерь для многозвенных схем. Вычисление потерь методом вероятностных графов	2	ОПК-4, 5, 6
6	Анализ цифровых систем с пакетной коммутацией	Характеристики цифровых сетей. Анализ цифровых сетей с простейшим входным потоком и неограниченным объемом буфера. Анализ цифровых сетей с простейшим входным потоком и ограниченным объемом буфера. Анализ цифровых сетей с примитивным входным потоком. Анализ цифровых сетей с произвольным распределением времени обслуживания. Время доставки пакетов	4	ОПК-4, 5, 6

		в сети с установлением соединения. Время доставки пакетов в сети без установления соединения		
7	Фрактальные модели трафика	Введение во фракталы . Самоподобные (фрактальные) случайные последовательности. Виды самоподобных случайных последовательностей. Система с самоподобным входным потоком и детерминированным временем обслуживания. Моделирование самоподобных случайных процессов. Анализ систем с самоподобным характером времени обслуживания	4	ОПК-4, 5, 6
8	Алгоритмы маршрутизации в сетях связи	Таблицы маршрутизации. Методы формирования плана распределения информации. Алгоритмы выбора исходящих линий связи. Определение средней задержки при передаче сообщений в сетях связи с пакетной коммутацией	2	ОПК-4, 5, 6

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и сопутствующими дисциплинами

№ п/п	Наименование обеспечивающих (предыдущих) и обеспечиваемых	№ № разделов данной дисциплины из табл.5.1, для которых необходимо изучение обеспечивающих (предыдущих) обеспечиваемых (последующих) дисциплин							
	(последующих) дисциплин	1	2	3	4	5			
		П	редше	ствую	щие дис	циплин	ы		
1	Цифровая обработка сигналов систем связи		+	+					
2	Формирование и обработка сигналов систем связи	+	+	+					
3	Моделирование устройств и систем связи		+						
			Пос	ледую	щие дис	сциплин	ы		
1	Теория и техника передачи информации	+	+	+	+	+			
2	Технологии применения инфокоммуникацион- ных систем и сетей		+	+	+	+			
3	Системы и сети передачи данных		+	+	+	+			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень ком-петенций				Формы кон	троля (примеры)
	Л	КР	Пр.	CP C	
ОПК-4	+		+	+	Контрольные работы
ОПК-5	+			+	Контрольные работы
ОПК-6	+		+	+	Контрольные работы

Л - лекция, Пр - п

рактические и семинарские занятия, КР - курсовые работы, СРС - самост. раб.

6. Методы и формы организации обучения Технологии интерактивного обучения при разных формах занятий в часах

Форм	Лекци	Практиче-	Курсовая работа (час)	СРС (час)	Всего
ы Методы	и (час)	ские заня-	раобта (час)	(час)	
Лекции - консультации	4				4
Использование интерактивных методов на практических занятиях (тестирование, поисковые методы, метод конкретных ситуаций)		8			8
Работа в команде	4				4
Итого интерактивных занятий	8	8			16

7. Лабораторный практикум (не предусмотрено)

8. Практические занятия

№ п/п	№ Раздела дис- циплины из табл. 5.1	Тематика практических занятий (семинаров)	Трудо- емкость (час.)	Компетенции ОК, ПК
1	2	Моделирование трехзвенной схемы	4	ОПК-4, 5, 6
2	3	Определение основных характеристик цифровой системы	8	ОПК-4, 5, 6
3	4	Моделирование цифровой сети с буфером и одним сервером	8	ОПК-4, 5, 6
4	5	Моделирование простой сети связи	12	ОПК-4, 5, 6

9. Самостоятельная работа (96 час.)

№ п/ п	№ Раздела дисципли- ны из табл. 5.1	Тематика самостоятельной работы (детализация)	Трудо- емкость (час.)	Компетенции ОК, ПК	Контроль вы- полнения рабо- ты
1	1	Вводная слайд-видео лекция.	2	ОПК-4, 5, 6	
2	2	Элементы теории телетрафика. Работа с учебно-методическим пособием.	6	ОПК-4, 5, 6	Выполнение домашнего ин- дивидуальног о задания
3	3	Теория телетрафика и ее применение. Работа с учебно-методическим пособием.	6	ОПК-4, 5, 6	Контрольная работа.
4	7	Фрактальные модели трафика Работа с учебно-методическим пособием, подготовка к практическим занятиям.	20	ОПК-4, 5, 6	Выполнение домашнего ин- дивидуальног о задания
5	8	Алгоритмы маршрутизации в сетях связи Работа с учебно-методическим пособием, подготовка к практическим занятиям.	62	ОПК-4, 5, 6	Выполнение домашнего ин- дивидуальног о задания

10. Примерная тематика курсовых проектов (работ) – (не предусмотрены)

11. Рейтинговая система для оценки успеваемости студентов.

Методика текущего контроля освоения дисциплины

Осуществляется в соответствии с Положением о порядке использования рейтинговой системы для оценки успеваемости студентов (приказ ректора 25.02.2010 № 1902) и основана на бально-рейтинговой системе оценки успеваемости, действующей с 2009 г., которая включает текущий контроль выполнения элементов объема дисциплины по элементам контроля с подведением текущего рейтинга (раздел 6).

Правила формирования пятибалльных оценок за каждую контрольную точку (КТ1, КТ2) осуществляется путем округления величины, рассчитанной по формуле:

$$KTx\big|_{x=1,2} = \frac{(Cymma_баллов,_набранная_\kappa_KTx)*5}{Tребуемая_сумма_баллов_по_балльной_раскладке}$$

После окончания семестра студент, набравший менее 50 баллов, считается неуспевающим, не получившим зачет. Студент, выполнивший все запланированные лабораторные работы и контрольные работы, набравший сумму 50 и более баллов, получает зачет «автоматом».

Таблица 11.1. Балльные оценки для элементов контроля (зачет, лекции, практические работы)

Элементы учебной деятельности	Максимальный балл на 1-ую контрольную точку с начала семестра	Максимальн ый балл за период между 1КТ и 2КТ	Максимальн ый балл за период между 2КТ и на конец семестра	Всего за семестр
Посещение занятий	4	3	3	10
Выполнение тестовых работ	6	8	6	20
Индивидуальные расчетные задания	5	5	4	14
Выполнение и защита практических работ	0	10	10	20
Компонент своевременности	2	2	2	6
Выполнение и зашита самостоятельной работы	10	10	10	30
Итого максимум за период:	27	38	35	100

Таблица 11.2. Пересчет баллов в оценки за контрольные точки (КТ)

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3. Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
1 (vanavia)	85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
	70 - 74	
3 (удовлетворительно)	65 – 69	 D (удовлетворительно)
(зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

^{12.} Учебно-методическое и информационное обеспечение дисциплины:

^{12.1} Основная литература

^{1.} Акулиничев Ю. П., Бернгардт А. С. Теория и техника передачи информации: Учебное пособие. -Томск: Томск. гос. ун-т систем управления и радиоэлектроники,2011. - 190с. Режим доступа: http://edu.tusur.ru/training/publications/1750

- 2. **Голиков А.М.** Транспортные и мультисервисные системы и сети связи: 2012. 292 с.: Сборник лабораторных работ. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2012. 292 с. Режим доступа: http://edu.tusur.ru/training/publications/1111
- 12.2. Дополнительная литература
 - 1. Акулиничев Ю.П. Теория электрической связи: учеб. пособие. Томск:, ТУСУР, 2007. 214 с. (100 экз.)
- 12.3 Программное обеспечение
 - 1. Операционная система Windows.
 - 2. Matlab, LabView.
 - 3. Информационно-справочные и поисковые системы.
- 12. 4 Материально-техническое обеспечение дисциплины:
 - 1. Учебно-методический комплекс дисциплины:
- Ю.П. Акулиничев, А.С. Бернгардт. Теория и техника передачи информации: Учебное пособие. Томск: 2011. -190с. Режим доступа: http://edu.tusur.ru/training/publications/1750
- Голиков А.М. Транспортные и мультисервисные системы и сети связи: 2012. 292 с.: Сборник лабораторных работ. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2012. 292 с. Режим доступа: http://edu.tusur.ru/training/publications/1111
- Теория и техника передачи информации: Учебно-методическое пособие для проведения практических занятий и самостоятельной работы студентов / Акулиничев Ю. П. 2012, 202 с. Режим доступа: http://edu.tusur.ru/training/publications/1754
 - Тестовые вопросы для самоконтроля.
 - Оборудование лаборатории информационной безопасности телекоммуникационных систем
 ауд. 401 радиотехнического корпуса.
 - 2. Персональные компьютеры с доступом в сеть Интернет.
 - 3. Демонстрационный телевизор.
 - 4. Фломастерная доска.
- 13. Методические рекомендации по организации изучения дисциплины

Основная рекомендация сводится к обеспечению равномерной активной работы студентов над курсом в течение учебного семестра.

При изучении курса следует стараться понять то общее, что объединяет рассматриваемые вопросы. Например, для методов передачи сигналов ключевым является понятие избыточности и ее роль при передаче информации. Для методов приема общей является идея уменьшения апостериорной неопределенности относительно передаваемого сигнала по сравнению с априорной неопределенностью.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по учебной работе			
П. Е. Троя			
« 21 »	06	2016 г.	

Громов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ *ПО УЧЕБНОЙ ДИСЦИПЛИНЕ* (ПРАКТИКЕ)

ТЕОРИЯ ТЕЛЕТРАФИКА

Уровень основной образовательной программы - магистратура

Направление подготовки магистра 11.04.02 «Инфокоммуникационные технологии и системы связи»

Магистерские программы подготовки: «Радиоэлектронные системы передачи информации» (каф. РТС), «Инфокоммуникационные системы беспроводного широкополосного доступа» (каф. ТОР), «Оптические системы связи и обработки информации» (каф. СВЧ и КР), «Электромагнитная совместимость радиоэлектронной аппаратуры» (каф. ТУ)

Форма ооучения - очная		
Факультет – радиотехнический	й (РТФ)	
Кафедра радиотехнических сис	стем (РТС)	
Курс - первый	Семестр второй	
Учебный	і план набора 2015 года и последующих лет.	
Зачет – второй семестр		
	Danie Samura	D.A
	Разработчик	B.

Томск - 2016

Зав. обеспечивающей кафедрой РТС ______ С.В. Мелихов

1 Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-4	Способность реализовывать новые принципы построения инфокоммуникационных систем и сетей различных типов передачи, распределения, обработки и хранения	 Должен знать: физические и математические модели процессов и явлений, лежащих в основе функционирования телекоммуникационных систем и сетей; аналитические и прикладные методы, программные средства, используемые при синтезе и анализе телекоммуникационных систем и сетей;
ОПК-5	информации Готовность учитывать при проведении исследований, проектировании, организации технологических процессов и эксплуатации инфокоммуникационных систем, сетей и устройств мировой опыт в вопросах технического регулирования, метрологического обеспечения и безопасности жизнедеятельности	 способы описания и представления телекоммуникационных систем и сетей; современные тенденции в развитии методов и способов описания и проектирования телекоммуникационных систем и сетей; основные закономерности исторического процесса в науке и технике, этапы исторического развития радиотехники, место и значение радиосистем передачи информации в современном мире; методологические основы и принципы современной науки; вопросы технического регулирования систем и сетей. Должен уметь: формулировать и решать задачи, грамотно использовать математический аппарат и
ОПК-6	Готовность к обеспечению мероприятий по управлению качеством при проведении проектно-конструкторских и	 численные методы для анализа и синтеза инфокоммуникационных систем и сетей; готовить методологическое обоснование научных исследований и технических разработок в области инфокоммуникационных систем и сетей; использовать рекомендации международного

научно-	союза электросвязи при анализе и синтезе
исследовательских	инфокоммуникационных систем и сетей
работ, а также в	Должен владеть:
организационно-	• математическим аппаратом для решения задач
управленческой	теоретической и прикладной направленности,
деятельности в	методами исследования и моделирования
организациях отрасли в	инфокоммуникационных систем и сетей;
соответствии с	• навыками методологического анализа
требованиями	научных исследований и обработкой их
действующих	результатов.
стандартов, включая	
подготовку и участие в	
соответствующих	
конкурсах, готовностью	
и способностью	
внедрять системы	
управления качеством на	
основе международных	
стандартов	

2 Реализация компетенций

2.1 Компетенция ОПК-4

ОПК-4: Способность реализовывать новые принципы построения инфокоммуникационных систем и сетей различных типов передачи, распределения, обработки и хранения информации.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 2.

Таблица 2- Этапы формирования компетенции и используемые средства опенивания

1. Состав	Знать	Уметь	Владеть
Содержание этапов	Знает физические и математические модели процессов и явлений, лежащие в основе функционирования телекоммуникационны х систем и сетей; принципы построения инфокоммуникационных систем и сетей	Умеет использовать теоретические знания для синтеза и анализа телекоммуникационных систем и сетей;	Владеет математическим аппаратом; методами исследования и моделирования инфокоммуникационных систем и сетей;
Виды занятий	Лекции;Практические занятия	• Выполнение домашних заданий;	• Практические занятия.

	• Групповые консультации;	• Самостоятельная работа студентов	
Используемые средства оценивания	 Тест; Контрольная работа; Выполнение домашних заданий; Зачет 	Оформление решения задач;Защита домашних заданий.	• Зачет.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуе- мыми для выполне- ния простых задач	Работает при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Знает математический аппарат и способы	свободно применяет математические и прикладные методы	свободно владеет разными способами представления

	представления телекоммуникационн ых систем или сетей в виде математических моделей с различным уровнем детализации.	для описания телекоммуникационн ых систем и сетей; умеет математически выражать и аргументированно доказывать необходимые характеристики разрабатываемой системы	телекоммуникационн ых систем или сетей в виде математических моделей с различным уровнем детализации.
Хорошо (базовый уровень)	Знает способы представления телекоммуникационных систем или сетей в виде математических моделей с различным уровнем детализации.	применяет математические и прикладные методы для описания телекоммуникационных систем и сетей.	владеет разными способами представления телекоммуникационн ых систем или сетей в виде математических моделей с различным уровнем детализации.
Удовлетворитель но (пороговый уровень)	Имеет представление о способах представления телекоммуникационн ых систем или сетей в виде математических моделей с различным уровнем детализации	Имеет представление о математических и прикладных методах описания телекоммуникационных систем и сетей.	владеет одним из способов представления телекоммуникационн ых систем или сетей в виде математических моделей с различным уровнем детализации.

2.2. Компетенция ОПК-5

ОПК-5: Готовность учитывать при проведении исследований, проектировании, организации технологических процессов и эксплуатации инфокоммуникационных систем, сетей и устройств мировой опыт в вопросах технического регулирования, метрологического обеспечения и безопасности жизнедеятельности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

2. Состав	Знать	Уметь	Владеть
Содержание этапов	Знает стандарты технического регулирования,	Умеет использовать стандарты при проведении	Владеет практическими приемами,

	метрологического обеспечения и безопасности жизнедеятельности в области инфокоммуникационны х систем	исследований, проектировании, организации технологических процессов эксплуатации инфокоммуникационны х систем	опирающимися на мировой опыт.
Виды занятий	Лекции;Практические занятияГрупповые консультации;	Выполнение домашних заданий;Самостоятельная работа студентов	• Практические занятия.
Используемые средства оценивания	Тест;Контрольная работа;Выполнение домашних заданий;Зачет	Оформление решения задач;Защита домашних заданий.	• Зачет.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуе- мыми для выполне- ния простых задач	Работает при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 7.

Таблица 7 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Знает отечественные и зарубежные стандарты технического регулирования, метрологического обеспечения и безопасности жизнедеятельности в области инфокоммуникационных систем	свободно применяет стандарты технического регулирования, метрологического обеспечения и безопасности жизнедеятельности при решении задач проектирования;	свободно владеет практическими приемами, опирающимися на мировой опыт.
Хорошо (базовый уровень)	Знает отечественные стандарты технического регулирования и безопасности жизнедеятельности в области инфокоммуникационных систем	применяет стандарты технического регулирования, метрологического обеспечения и безопасности жизнедеятельности при решении задач проектирования;	владеет практическими приемами, опирающимися на мировой опыт.
Удовлетворительно (пороговый уровень)	Имеет представление о стандартах технического регулирования, метрологического обеспечения и безопасности жизнедеятельности в области инфокоммуникационных систем	Имеет представление об использовании стандартах при решении задач проектирования	владеет стандартными приемами, опирающимися на мировой опыт.

2.2 Компетенция ОПК-6

ОПК-6: Готовность к обеспечению мероприятий по управлению качеством при проведении проектно-конструкторских и научно-исследовательских работ, а также в организационно-управленческой деятельности в организациях отрасли в соответствии с требованиями действующих стандартов, включая подготовку и участие в соответствующих конкурсах, готовностью и способностью внедрять системы управления качеством на основе международных стандартов.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 8.

Таблица 8 – Этапы формирования компетенции и используемые средства оценивания

3. Состав	Знать	Уметь	Владеть
Содержание этапов	Знает методологические основы и принципы современной науки; международные стандарты	Умеет готовить методологическое обоснование научных исследований и технических разработок.	Владеет навыками методологического анализа научных исследований и обработкой их результатов.
Виды занятий	∙Лекции;•Практические занятия•Групповые консультации;	Выполнение домашних заданий;Самостоятельная работа студентов	•Практические занятия.
Используемые средства оценивания	•Тест; •Контрольная работа; •Выполнение домашних заданий; •Зачет	Оформление решения задач;Защита домашних заданий.	• Зачет.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 9.

Таблица 9 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапа- зоном практических умений, требуемых для развития твор- ческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения	Берет ответственность за завершение задач в исследовании, приспосабливает

		определенных проблем в области исследования	свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуе- мыми для выполнения простых задач	Работает при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 10.

Таблица 10 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Знает методологические основы и принципы проектно-конструкторских и научно-исследовательских работ; международные стандарты	Умеет обосновывать методологические приемы научных исследований и технических разработок; внедрять системы управления качеством на основе международных стандартов	Свободно владеет навыками методологического анализа научных исследований и обработкой их результатов.
Хорошо (базовый уровень)	Знает способы и принципы проектно-конструкторских и научно-исследовательских работ; международные стандарты	Умеет обосновывать методологические приемы научных исследований и технических разработок;	владеет навыками методологического анализа научных исследований и обработкой их результатов.
Удовлетворительно (пороговый уровень)	Имеет представление о способах и принципах проектно-конструкторских и научно-исследовательских работ; международные стандарты	Имеет представление об использовании международных стандартов	владеет базовыми навыками методологического анализа научных исследований

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания и иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

- Тесты: 7 тестов, используемые в начале каждой лекции для контроля самостоятельной работы и усвоения лекционного материала (прилагается типовой вариант).
- Контрольная работа: 3 контрольных работы, проводятся в начале каждой пятой практики для контроля самостоятельной работы, усвоения лекционного материала и закрепления навыков, полученных на практических занятиях (прилагается типовой вариант).
- Выполнение домашних заданий: 13 домашних заданий, которые включают в себя решение задач и выполнение расчетов (прилагается типовой вариант задач и расчетного задания).
- Темы для самостоятельной работы:
 - усвоение лекционного материала по учебным пособиям с самопроверкой по контрольным вопросам (контрольные вопросы содержатся в учебно-методическом пособии см. п. 4.1);
 - подготовка к зачету.
- Вопросы к зачету (прилагается список).

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе (согласно пункту 12 рабочей программы):

- 4.1. Акулиничев Ю. П., Бернгардт А. С. Теория и техника передачи информации: Учебное пособие. Томск: Томск, гос. ун-т систем управления и радиоэлектроники,2011. 190c, Режим доступа: https://edu.tusur.ru/training/publications/1750
- 4.2. Голиков А.М. Транспортные и мультисервисные системы и сети связи: 2012. 292 с.: Сборник лабораторных работ. Томск: Томск, гос. ун-т систем управления и радиоэлектроники, 2012. 292 с. Режим доступа:

Приложения

- П.1. Типовой вариант теста.
- П.2. Типовой вариант контрольной работы.
- П.3. Типовой вариант задач.
- П.4. Типовой вариант расчетного задания.
- П.5. Вопросы к зачету.

Приложение П.1.

Типовой вариант теста

Группа	Фамилия студента	
--------	------------------	--

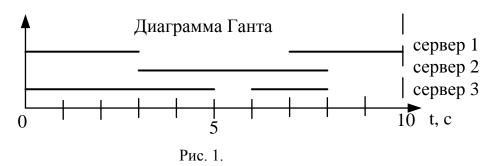
В поле правильного ответа поставить знак «Х»

Вопрос	Ответ 1	Ответ 2	Ответ 3
Выберите неверное	Дисциплина о	Научная основа	Дисциплина о
определение теории	закономерностях и	измерения и	закономерностях и
телетрафика.	количественном описании	прогнозирования качества	количественном описании
	процессов движения	работы	преобразований
	сообщений	телекоммуникационных	случайных величин
		сетей	
Выберите	Международный союз	Институт инженеров	Международная
международную	электросвязи (ITU)	электротехники и	организация по
организацию,		электроники (IEEE)	стандартизации (ISO)
определяющую			
рекомендации в области			
телекоммуникаций			
Укажите имя ученого,	Андрей Марков	Агнер Эрланг	Бернхард Риман
не имеющего прямого			
отношения к теории			
телетрафика			
Укажите причину	Конструкторские ошибки	Ограниченность ресурсов	Технологические ошибки
возникновения			
конфликтов в			
динамических системах			
Чтобы ни одно	буфер памяти требований	ограничивают входной	линию с обратной связью
требование не было		поток требований	
потеряно делают			
В каких единицах	Эрланг*час	Эрланг/час	Бит
измеряют объем			
трафика, согласно			
международным			
требованиям.			
Что изображают на	Загрузку сервера в	Число требование в	Средне время
диаграмме Кивиата	динамике	единицу времени	обслуживания требований
			за сутки
Что изображают на	Обслуженный трафик	Поступающий трафик	Среднее время ожидания
диаграмме Ганта			обслуживания

Приложение П.2.

Типовой вариант контрольной работы

Группа	Фамилия студента
труппа	Фамилия студента


Задание №1.

Что отображают на диаграмме Ганта, Кивиата?

Задание №2.

Дана диаграмма Ганта на рис. 1.

- 1. Вычислить объем трафика за 10 с.
- 2. Вычислить среднюю интенсивность трафика за 10 с.
- 3. Вычислить среднюю интенсивность трафика за первые 5 с, за последние 5 секунд.

Задание №3.

Вычислить среднюю интенсивность сетевого трафика. Дано: время сбора статистики – 20 сек, скорость канала – 10 Мбит/с.

Таблица статистики:

Номер пакета	Размер пакета, бит
1	54
2	54
3	1600
4	94
5	524

Задание №4.

Перечислить свойства случайных потоков с определениями.

Задание №5.

Что показывает параметр Херста? Оценить параметр Херста по статистики.

Таблица статистики:

Номер секунды	Число пакетов в секунду, шт.
1	68
2	38
3	46
4	74
5	36

Приложение П.3.

Типовой вариант задач

- 1. Вероятность того, что любой абонент позвонит на коммутатор в течение часа, равна 0,005. Телефонная станция обслуживает 600 абонентов. Какова вероятность того, что в течение часа позвонят пять абонентов?
- 2. Поток заявок, поступающих на телефонную станцию, представляет собой простейший поток (пуассоновский). Математическое ожидание числа вызовов за час равно 30. Найти вероятность того, что за минуту поступит не менее двух вызовов.
- 3. Среднее число вызовов, поступающих на ATC в одну секунду, равно трем. Найти вероятность того, что за две секунды поступит: а) четыре вызова; б) менее четырех вызовов; в) не менее четырех вызовов.
- 4. При работе телефонной станции время от времени поступают заявки с высоким приоритетом. Поток можно считать простейшим. Среднее число таких заявок за сутки равно 1,5. Найти вероятность следующих событий:
 - 1) За двое суток не поступит ни одной заявки;
 - 2) В течение суток поступит хотя бы одна заявка;
 - 3) За неделю поступит не менее трех заявок.

Приложение П.4.

Типовой вариант расчетного задания

Задание №1

- 1. Измерить интенсивность трафика (телефонного) сотового телефона за сутки.
- 2. Оценить среднюю интенсивность трафика за сутки.
- 3. Определить час наибольшей нагрузки.
- 4. Построить диаграммы Ганта и Кивиата.
- 5. Статистику трафика представить в виде таблицы.

Приложение П.5.

Вопросы к зачету

- 1. Назовите основные понятия модели потоков событий (стационарность, последействие, ординарность, интенсивность потока).
- 2. Что такое стационарный и нестационарный пуассоновские потоки? Перечислите их свойства.
- 3. Какие потоки относятся к потокам с ограниченным последействием? В чем заключается их главная особенность?
- 4. Что такое примитивный поток? Назовите основные его свойства.
- 5. Дайте определение длительности обслуживания.
- 6. Что понимается под потоком освобождений?
- 7. В каких единицах измеряется нагрузка и интенсивность нагрузки?
- 8. Дайте определение ЧНН и объясните способ его определения.
- 9. Что такое коэффициент концентрации нагрузки?
- 10. Каким образом распределена нагрузка в течение суток?
- 11. Какие показатели используются для характеристики качества систем передачи информации?
- 12. Почему при рассмотрении системы с потерями при простейших информационных потоках можно использовать Марковскую модель переходов из одного состояния в другое?
- 13. Сформулируйте первую формулу Эрланга для определения вероятностей потерь по вызовам.
- 14. В каких случаях следует применять модель системы передачи с примитивным входным потоком?
- 15. Каким образом определяется требуемое число каналов связи для систем с примитивным входным потоком?
- 16. В чем отличие систем с ожиданием от систем с отказами?
- 17. Какими выражениями определяется распределение Эрланга?
- 18. Что такое коммутационная система и какие основные ее виды существуют?
- 19. Опи<u>ши</u>те поведение среднего времени обслуживания и среднего числа пакетов в цифровой системе при простейшем входном потоке и показательном времени обслуживании.
- 20. Какая схема лучше: односерверная со средней интенсивностью обслуживания или двухсерверная со средней интенсивностью обслуживания каждого сервера?
- 21. Какая дополнительная характеристика применяется при анализе цифровых систем с ограниченным буфером?
- 22. Из каких временных интервалов складывается общее время передачи пакета в сетях с установлением соединения?
- 23. Как определяется общее время передачи пакета данных в сетях без установления соединения?
- 24. Что такое фрактал и каковы его основные свойства? Дайте определение самоподобного случайного процесса.