МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	`	УТВЕР	ЖДАЮ)		
Дирек	тор д	епарта	мента с	бразо	ван	ИЯ
			П. 1	Е. Тро	нк	
‹ ‹	>>			20	Γ.	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы волоконной оптики

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.02 Инфокоммуникационные технологии и

системы связи

Направленность (профиль) / специализация: Оптические системы и сети связи

Форма обучения: заочная

Факультет: ЗиВФ, Заочный и вечерний факультет

Кафедра: СВЧиКР, Кафедра сверхвысокочастотной и квантовой радиотехники

Kypc: 3

Семестр: 5, 6

Учебный план набора 2014 года

Распределение рабочего времени

No	Виды учебной деятельности	5 семестр	6 семестр	Всего	Единицы
1	Лекции	6	0	6	часов
2	Практические занятия	2	2	4	часов
3	Лабораторные работы	0	4	4	часов
4	Всего аудиторных занятий	8	6	14	часов
5	Самостоятельная работа	40	50	90	часов
6	Всего (без экзамена)	48	56	104	часов
7	Подготовка и сдача зачета	0	4	4	часов
8	Общая трудоемкость	48	60	108	часов
				3.0	3.E.

Контрольные работы: 6 семестр - 1

Зачет: 6 семестр

Томск 2018

Рассмотрена 1	и одо	брена на з	васедании	кафедры
протокол №	9	от «24	»5	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа дисциплины составлена с учетом требований федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 11.03.02 Инфокоммуникационные технологии и системы связи, утвержденного 06.03.2015 года, рассмотрена и одобрена на заседании кафедры СВЧиКР « » 20 года, протокол № Разработчик: _____ А. С. Перин доцент каф. СВЧиКР Заведующий обеспечивающей каф. СВЧиКР С. Н. Шарангович Рабочая программа дисциплины согласована с факультетом и выпускающей кафедрой: _____ И. В. Осипов Декан ЗиВФ Заведующий выпускающей каф. __ С. Н. Шарангович СВЧиКР Эксперты: Заведующий кафедрой сверхвысокочастотной и квантовой радиотехники (СВЧиКР) С. Н. Шарангович Доцент кафедры сверхвысокочастотной и квантовой радиотехники _____ А. Ю. Попков (СВЧиКР)

1. Цели и задачи дисциплины

1.1. Цели дисциплины

подготовка студентов в области физических принципов функционирования элементов и приборов оптоэлектроники, а также физических основ и технологии изготовления элементов волоконной оптики.

1.2. Задачи дисциплины

 изучение фундаментальных положений оптоэлектроники, оптики и нелинейной оптики волноводных элементов, особенностей технологии изготовления компонентов оптоэлектроники и волоконной оптики.

2. Место дисциплины в структуре ОПОП

Дисциплина «Основы волоконной оптики» (Б1.В.ДВ.6.1) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Основы волоконной оптики, Физика, Электромагнитные поля и волны.

Последующими дисциплинами являются: Основы волоконной оптики, Оптические направляющие среды, Оптические цифровые телекоммуникационные системы.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-7 готовностью к изучению научно-технической информации, отечественного и зарубежного опыта по тематике проекта;
- ПК-17 способностью применять современные теоретические и экспериментальные методы исследования с целью создания новых перспективных средств электросвязи и информатики;

В результате изучения дисциплины обучающийся должен:

- знать фундаментальные положения теории твердых тел, основные законы и соотношения оптоэлектроники, волновой оптики и оптики направляющих диэлектрических структур; основы физики формирования электрических и оптических свойств твердых тел, физики взаимодействия света со средой и основы нелинейной оптики в приложении к оптическим направляющим структурам; основы технологии производства оптоэлектронных компонентов, оптических волокон и волноводных элементов; устройство, принципы работы и характеристики оптоэлектронных и волоконно-оптических приборов.
- уметь объяснять физические эффекты, лежащие в основе работы оптоэлектронных и волоконно-оптических компонентов и приборов; применять на практике известные методы исследования оптоэлектронных и волоконно-оптических элементов и устройств; выполнять расчеты, связанные с определением параметров и характеристик оптоэлектронных и волоконно-оптических компонентов и устройств; проводить компьютерное моделирование и проектирование оптоэлектронных и волоконно-оптических компонентов и устройств, а также иметь представление о методах компьютерной оптимизации таких устройств; пользоваться справочными данными по оптоэлектронным, волоконно-оптическим компонентам и приборам при проектировании инфокоммуникационных систем и сетей связи, сопоставляя особенности характеристик таких компонентов и приборов;
- владеть навыками чтения и изображения схем оптоэлектронных и оптических приборов, систем и сетей на основе современной элементной базы оптоэлектроники и волоконной оптики; навыками расчета, проектирования и компьютерного моделирования оптоэлектронных и волоконно-оптических элементов и устройств; навыками практической работы с оптоэлектронными и волоконно-оптическими элементами, а также с лабораторными макетами оптоэлектронных, волоконно-оптических приборов и с контрольно-измерительной аппаратурой.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
---------------------------	-------------	----------

		5 семестр	6 семестр
Аудиторные занятия (всего)	14	8	6
Лекции	6	6	0
Практические занятия	4	2	2
Лабораторные работы	4	0	4
Самостоятельная работа (всего)	90	40	50
Проработка лекционного материала	8	8	0
Самостоятельное изучение тем (вопросов) теоретической части курса	60	30	30
Подготовка к практическим занятиям, семинарам	10	2	8
Выполнение контрольных работ	12	0	12
Всего (без экзамена)	104	48	56
Подготовка и сдача зачета	4	0	4
Общая трудоемкость, ч	108	48	60
Зачетные Единицы	3.0		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Лаб. раб., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
	5 cen	местр				
1 Введение	0	0	0	0	0	
2 Основные соотношения для описания плоских световых волн и световых пучков	3	2	0	22	27	ПК-17, ПК-7
3 Волоконные световоды	3	0	0	18	21	ПК-17, ПК-7
Итого за семестр	6	2	0	40	48	
	6 cer	местр				
4 Волоконные и интегрально-оптические элементы для волоконной оптики	0	0	4	20	24	ПК-17, ПК-7
5 Нелинейно-оптические эффекты в волоконных световодах	0	1	0	9	10	ПК-17, ПК-7
6 Волоконно-оптические датчики волоконные лазеры	0	1	0	21	22	ПК-17, ПК-7
Итого за семестр	0	2	4	50	56	
Итого	6	4	4	90	104	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины (по лекциям)	Трудоемкость, ч	Формируемые компетенции
	5 семестр		1
2 Основные соотношения для описания плоских световых волн и световых пучков	Система уравнений электромагнитного поля для диэлектрической среды. Волновое уравнение. Поляризация света. Поляризационные элементы. Отражение света от плоской границы. Полное внутреннее отражение света. Параболическое уравнение теории дифракции. Гауссов световой пучок.	3	ПК-17, ПК-7
	Итого	3	
3 Волоконные световоды	Планарный, канальный и цилиндрический диэлектрические волноводы: связь между компонентами электрического и магнитного векторов, волновые уравнения, дисперсионные уравнения для волноводов со ступенчатым профилем, типы направляемых мод и распределения их полей в планарном и цилиндрическом диэлектрических волноводах. Световоды с двойным лучепреломлением; фотонно-кристаллические и некварцевые волоконные световоды — основные характеристики и особенности.	3	ПК-17, ПК-7
	Итого	3	
Итого за семестр		6	
Итого		6	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин							
	1	2	3	4	5	6		
Предшествующие дисциплины								
1 Основы волоконной оптики	+	+	+	+	+	+		
2 Физика		+	+	+	+	+		
3 Электромагнитные поля и волны		+	+	+	+	+		
По	следующи	е дисципл	ины					
1 Основы волоконной оптики	+	+	+	+	+	+		
2 Оптические направляющие среды		+	+	+	+	+		
3 Оптические цифровые телекомму-		+	+	+	+	+		

никационные системы			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

ии		Виды з	анятий		
Компетенции	Лек.	Прак. зан.	Лаб. раб.	Сам. раб.	Формы контроля
ПК-7	+	+	+	+	Контрольная работа, Отчет по лабораторной работе, Зачет, Тест
ПК-17	+	+	+	+	Контрольная работа, Отчет по лабораторной работе, Зачет, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

Tuosiii qui 7.1 Tiunimenobui	по пасораториви расст						
Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции				
	6 семестр						
4 Волоконные и интегрально-оптические	Исследование состояния поляризации лазерного излучения в полимерном волоконном световоде	4	ПК-17, ПК-7				
элементы для волоконной оптики	Итого	4					
Итого за семестр		4					
Итого		4					

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость,	Формируемые компетенции				
	5 семестр						
2 Основные соотношения для	Характеристики поля и поляризация плоских световых волн.	2	ПК-17, ПК-7				
описания плоских световых волн и	Итого	2					

световых пучков				
Итого за семестр		2		
6 семестр				
5 Нелинейно- оптические эффекты в	Расчет характеристик интегрально-оптических компонентов для волоконной оптики. Семинар.	1	ПК-17, ПК-7	
волоконных световодах	Итого	1		
6 Волоконно- оптические датчики	Расчет характеристик волоконно-оптических датчиков. Семинар.	1	ПК-17, ПК-7	
волоконные лазеры	Итого	1		
Итого за семестр		2		
Итого		4		

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

	Тоятельной рассты, трудоск			
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	5 семест	p		
2 Основные соотношения для описания плоских световых волн и световых пучков	Подготовка к практиче- ским занятиям, семина- рам	2	ПК-17, ПК-7	Тест
	Самостоятельное изучение тем (вопросов) теоретической части курса	16		
	Проработка лекционного материала	4		
	Итого	22		
3 Волоконные световоды	Самостоятельное изучение тем (вопросов) теоретической части курса	14	ПК-17, ПК-7	Зачет, Тест
	Проработка лекционного материала	4		
	Итого	18		
Итого за семестр		40		
	6 семест	p		
4 Волоконные и интегрально-оптические элементы для волоконной оптики	Самостоятельное изучение тем (вопросов) теоретической части курса	20	ПК-17, ПК-7	Зачет, Тест
	Итого	20		
5 Нелинейно-оптические эффекты в волоконных	Подготовка к практическим занятиям, семина-	4	ПК-17, ПК-7	Зачет, Тест

световодах	рам			
	Самостоятельное изучение тем (вопросов) теоретической части курса	5		
	Итого	9		
6 Волоконно-оптические датчики волоконные лазеры	Выполнение контрольных работ	12	ПК-17, ПК-7	Зачет, Контрольная работа, Тест
	Подготовка к практическим занятиям, семинарам	4		
	Самостоятельное изучение тем (вопросов) теоретической части курса	5		
	Итого	21		
Итого за семестр		50		
	Подготовка и сдача зачета	4		Зачет
Итого		94		

10. Курсовой проект / курсовая работа

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся Рейтинговая система не используется.

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Волоконно-оптические устройства технологического назначения: Учебное пособие / Шандаров В. М. - 2013. 198 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/3709 (дата обращения: 03.07.2018).

12.2. Дополнительная литература

1. Игнатов, А.Н. Оптоэлектроника и нанофотоника [Электронный ресурс]: учебное пособие / А.Н. Игнатов. — Электрон. дан. — Санкт-Петербург: Лань, 2017. — 596 с. [Электронный ресурс] - Режим доступа: https://e.lanbook.com/book/95150 (дата обращения: 03.07.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Исследование состояния поляризации лазерного излучения в полимерном волоконном световоде: Методические указания к лабораторной работе для бакалавров направления 210700.62 "Инфокоммуникационные технологии и системы связи" (профиль "Оптические системы и сети связи") / Шандаров В. М. 2013. 9 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/3708 (дата обращения: 03.07.2018).
- 2. Волоконно-оптические устройства и приборы: Учебно-методическое пособие по практическим занятиям и самостоятельной работе / Шандаров В. М. 2018. 40 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7347 (дата обращения: 03.07.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;

в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. Рекомендуется использовать профессиональные и информационные базы данных, список и адреса которых доступны по ссылке: https://lib.tusur.ru/ru/resursy/bazy-dannyh

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Лаборатория «Электронных, квантовых и СВЧ приборов»

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 329а ауд.

Описание имеющегося оборудования:

- Генератор Г5-54 (1 шт.);
- Генератор Г4-126 (1 шт.);
- Осциллограф С1-112A (1 шт.);
- Измерительная линия Р1-4 (2 шт);
- Источник питания УИП-1 (2 шт);
- Оптическая скамья ОСК-3 (3 шт.);
- Лазер ЛГН-105 (1 шт.);
- Осциллограф С1-65 (1 шт.);
- Генератор сигналов Г4-102 (1 шт.);
- Милливаттметр B3-36 (1 шт.);
- Измерительная волноводная линия ИВЛ-140 (2 шт.);
- Усилитель У2-4 (1 шт.);
- Осциллограф С1-5 (1 шт.);
- Генератор Г4-109 (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение не требуется.

13.1.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория «Электронных, квантовых и СВЧ приборов»

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 329а ауд.

Описание имеющегося оборудования:

- Генератор Г5-54 (1 шт.);
- Генератор Г4-126 (1 шт.);
- Осциллограф С1-112A (1 шт.);
- Измерительная линия Р1-4 (2 шт);
- Источник питания УИП-1 (2 шт);
- Оптическая скамья ОСК-3 (3 шт.);
- Лазер ЛГН-105 (1 шт.);
- Осциллограф С1-65 (1 шт.);
- Генератор сигналов Г4-102 (1 шт.);
- Милливаттметр В3-36 (1 шт.);
- Измерительная волноводная линия ИВЛ-140 (2 шт.);
- Усилитель У2-4 (1 шт.);
- Осциллограф С1-5 (1 шт.);
- Генератор Г4-109 (1 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение не требуется.

13.1.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice:
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/пере-

дачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

- 1. Какая длина волны соответствует инфракрасному излучению?
- а) 0,3 мкм
- б) 0,6 мкм
- в) 0,5 мкм
- г) 1 мкм
- 2. Какая длина волны соответствует ультрафиолетовой области спектра?
- а) 0,3 мкм
- б) 0,7 мкм
- в) 0,9 мкм
- г) 12 мкм
- 3. Какие частицы переносят оптическую энергию?
- а) фотоны
- б) фононы
- в) электроны
- г) дырки
- 4. Какой длине волны соответствует максимальная чувствительность глаза?
- а) 0,41 мкм
- б) 0,56 мкм
- в) 0,63 мм
- г) 0,72 мм
- 5. Какой механизм генерации излучения реализуется в полупроводниках?
- а) эффект термоэлектронной эмиссии
- б) эффект генерации электронно-дырочных пар
- в) эффект рекомбинации
- г) эффект фотолюминесценции
- 6. Какой параметр характеризует среду распространения электромагнитной волны?
- а) длина волны
- б) показатель преломления
- в) напряженность электрического поля
- г) начальная фаза
- 7. Какова скорость света в вакууме?
- a) 340 m/c
- б) 3х10е8 м/с
- в) 3x10e6 м/c
- г) 3х10е9 м/с
- 8. Какова скорость распространения электромагнитной волны в волноводе, имеющем показатель преломления n=3:
 - a) 340 m/c

- б) 3х10е8 м/с
- в) 10e8 м/c
- г) 10е5 м/с
- 9. Каким должен быть показатель преломления сердцевины оптического волновода n1 относительно показателя преломления оболочки n2?
 - a) n1 = 1
 - б) n 1> n2
 - B) n 1 < n2
 - Γ) n1= n2
 - 10. На каком эффекте основана работа полупроводниковых фотоприемников
 - а) рекомбинации электронов и дырок
 - б) генерации электронов и дырок за счет электрического тока
 - в) разделения электронно-дырочных пар под действием фотонов
 - г) образования электронно-дырочных пар под действием фотонов
 - 11. Существуют следующие виды поляризации световых волн:
 - а) линейная, сферическая, круговая
 - б) плоская, выпуклая
 - в) линейная, эллиптическая, круговая
 - г) линейная, тангенсальная
 - 12. Геометрическое место точек, в которых фаза волны одинакова, называется...
 - а) волновым фронтом
 - б) амплитудным фронтом
 - в) поляризационным фронтом
 - г) плоским фронтом
- 13. Световая волна с векторами E^- и H^- , направление которых может быть однозначно определено в любой момент времени в любой точке пространства, называется...
 - а) определенной
 - б) фазовой
 - в) поляризованной
 - г) интегральной
 - 14. Элементом, преобразующим состояние поляризации световой волны, является...
 - а) линза
 - б) фазовая пластинка
 - в) светофильтр
 - г) призма
 - 15. Угол падения, при котором отражённый луч полностью поляризован, называется ...
 - а) углом Гаусса
 - б) углом Брюстера
 - в) углом Фарадея
 - г) углом Снеллиуса
 - 16. Закон, описывающий преломление света на границе двух прозрачных сред, носит имя
 - а) Снеллиуса
 - б) Фарадея
 - в) Брюстера
 - г) Гаусса

- 17. Интерферометр, представляющий собой два плоских зеркала с высоким коэффициентом отражения и с параллельными плоскостями, расположенных на расстоянии L друг от друга, называется интерферометром...
 - а) Фабри-Перо
 - б) Маха-Цендера
 - в) Майкельсона
 - г) Юнга
 - 18. Электрооптический эффект это ...
 - а) изменение показателя преломления среды под действием изменения температуры
- б) изменение показателя преломления среды под действием приложенного физического воздействия
- в) изменение показателя преломления среды под действием приложенного постоянного или переменного электрического поля
 - г) изменение показателя преломления среды под действием магнитного поля
 - 19. Эффект фоторефракции заключается в изменении...
 - а) оптического поглощения
 - б) показателя преломления
 - в) оптического пропускания
 - г) коэффициента связи мод
- 20. Среда, свойства которой в различных направлениях различны, например, среда, которая для разных направлений световой волны имеет разные значения показателя преломления, называется...
 - а) изотропной
 - б) анизотропной
 - в) однородной
 - г) неоднородной

14.1.2. Темы контрольных работ

Расчет основных параметров волоконных световодов.

Расчет характеристик волоконно-оптических датчиков.

14.1.3. Зачёт

- 1. Материальность электромагнитного поля.
- 2. Векторы, характеризующие электромагнитное поле.
- 3. Уравнения Максвелла в интегральной форме.
- 4. Теоремы векторного анализа для связи характеристик скалярных и векторных полей.
- 5. Уравнения Максвелла в дифференциальной форме.
- 6. Материальные уравнения.
- 7. Граничные условия для нормальных составляющих электрического поля.
- 8. Граничные условия для нормальных составляющих магнитного поля.
- 9. Граничные условия для тангенциальных составляющих электрического поля.
- 10. Граничные условия для тангенциальных составляющих магнитного поля.
- 11. Волновое уравнение для электрического и магнитного векторов.
- 12. Плоские волны как простейшее решение волнового уравнения.
- 13. Символическая форма записи для поля плоских волн.
- 14. Распространение плоской волны в произвольном направлении.
- 15. Поперечная структура поля плоских волн.
- 16. Поляризация света. Неполяризованный свет. Частично поляризованный свет.
- 17. Линейная, круговая, эллиптическая поляризация.
- 18. Поляризационные элементы. Дихроизм и оптическая анизотропия.
- 19. Поляризационные призмы.
- 20. Фазовые пластинки.
- 21. Понятие углового спектра плоских волн.

- 22. Приближенное решение дифракционных задач на основе углового спектра плоских волн.
 - 23. Параболическое уравнение.
 - 24. Гауссов световой пучок. Основные свойства, поле гауссова пучка.
 - 25. Высшие гауссовы моды.
 - 26. Суть и достоинства методов оптической обработки информации.
 - 27. Преобразование Фурье в оптической системе.
 - 28. Пространственная фильтрация в оптических системах.
 - 29. Планарный оптический волновод.
 - 30. Моды планарного волновода.
 - 31. Волновое уравнение для ТЕ- мод.
 - 32. Решение для полей планарного волновода.
 - 33. Дисперсионное уравнение планарного волновода.
 - 34. Материалы интегральной оптики.
 - 35. Связанные оптические волноводы.
 - 36. Распространение световых волн в периодических структурах.
 - 37. Электрооптический эффект. Феноменологическое описание.
 - 38. «Поперечный» электрооптический модулятор.
 - 39. Акустооптический эффект. Феноменологическая теория.
- 40. Режимы дифракции света на акустических волнах. Дифракция Рамана-Ната и дифракция Брэгга.
 - 41. Акустооптический модулятор.
- 42. Фоторефрактивный эффект. Механизмы пространственного разделения носителей заряда.
- 43. Кинетика записи и релаксации элементарных голограмм в материале с фотовольтаическим механизмом транспорта носителей заряда.
- 44. Понятие нелинейно оптической среды и величина интенсивности светового поля, необходимая для проявления нелинейно оптических свойств среды.
- 45. Выражение для диэлектрической проницаемости среды с квадратичной нелинейностью и возможные нелинейно оптические эффекты в такой среде.
- 46. Выражение для диэлектрической проницаемости среды с кубичной нелинейностью и возможные нелинейно оптические эффекты в такой среде.

14.1.4. Темы лабораторных работ

Исследование состояния поляризации лазерного излучения в полимерном волоконном световоде

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями злоровья и инвалилов

эдоровы и инвалидов		
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами

С ограничениями по
общемедицинским
показаниям

Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы

Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.