МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	,	УТВЕРЖД	ΑЮ	
Дирек	тор д	цепартамен	та образо	вания
			П. Е. Тро	HRO
~	>>		20	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика-1

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 20.03.01 Техносферная безопасность

Направленность (профиль) / специализация: Управление техносферной безопасностью

Форма обучения: очная

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: РЭТЭМ, Кафедра радиоэлектронных технологий и экологического мониторинга

Курс: **1** Семестр: **1, 2**

Учебный план набора 2015 года

Распределение рабочего времени

№	Виды учебной деятельности	1 семестр	2 семестр	Всего	Единицы
1	Лекции	18	28	46	часов
2	Практические занятия	18	20	38	часов
3	Лабораторные работы	12	12	24	часов
4	Всего аудиторных занятий	48	60	108	часов
5	Самостоятельная работа	78	66	144	часов
6	Всего (без экзамена)	126	126	252	часов
7	Подготовка и сдача экзамена		36	36	часов
8	Общая трудоемкость	126	162	288	часов
		3.5	4.5	8.0	3.E.

Зачет: 1 семестр Экзамен: 2 семестр

Томск 2018

Рассмотрена	и одо	брена на	а за	седании	кафедры
протокол №	123	от ≪ 7	»	6	2018 г

ЛИСТ СОГЛАСОВАНИЯ

	Jinei coi:	THEODI HINDI
	Рабочая программа дисциплины составл	вена с учетом требований федерального государ
ствен		образования (ФГОС ВО) по направлению подго
	-	безопасность, утвержденного 21.03.2016 год
		физики «» 20 года, протоко
pacem No	отрена и одоорена на заседании кафедры	физики « <u></u> — <u>20</u> годи, протокс
	·	
	Разработчик:	
	профессор каф. физики	А. С. Климов
	профессор каф. физики	11. C. ICHINOD
	n v ~ v 1	
	Заведующий обеспечивающей каф.	$\Gamma M O$
	физики	Е. М. Окс
	Рабочая программа дисциплины согласов	ана с факультетом и выпускающей кафедрой:
	Декан РКФ	Д. В. Озеркин
	Заведующий выпускающей каф.	
	РЭТЭМ	В. И. Туев
	1010111	<i>D. 11. 1 yeb</i>
	Эксперты:	
	эксперты.	
	Howard responses thrower (provides)	A. D. Mayanyur
	Доцент кафедры физики (физики)	А. В. Медовник
	Доцент кафедры радиоэлектрон-	
	ных технологий и экологического	
	мониторинга (РЭТЭМ)	Н. Н. Несмелова

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Формирование целостного представления о физических процессах и явлениях, протекающих в природе, понимания естественнонаучной сущности проблем, возникающих в ходе профессиональной деятельности, и формирование способности к познавательной деятельности.

1.2. Задачи дисциплины

– Освоение студентами и умение использовать основные понятия, законы современной физической картины мира, методов теоретического и экспериментального исследований в физике и методов оценок порядков физических величин.

2. Место дисциплины в структуре ОПОП

Дисциплина «Физика-1» (Б1.Б.11) относится к блоку 1 (базовая часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Высшая математика, Механика, Физика-1.

Последующими дисциплинами являются: Безопасность жизнедеятельности, Физика-2, Физика-1.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОК-10 способностью к познавательной деятельности;

В результате изучения дисциплины обучающийся должен:

- знать основные физические явления и основные законы физики, границы их применимости; основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов; методы эмпирического и теоретического познания физических явлений применительно к задачам профессиональной деятельности.
- **уметь** объяснить основные наблюдаемые природные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; использовать различные методики эмпирического и теоретического познания физики наблюдаемых явлений
- **владеть** Навыками использования основных общефизических законов и принципов в важнейших практических приложениях; методиками эмпирического и теоретического исследования; навыками обработки и интерпретации результатов эксперимента.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 8.0 зачетных единицы и представлена в таблине 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семе	Семестры		
		1 семестр	2 семестр		
Аудиторные занятия (всего)	108	48	60		
Лекции	46	18	28		
Практические занятия	38	18	20		
Лабораторные работы	24	12	12		
Самостоятельная работа (всего)	144	78	66		
Оформление отчетов по лабораторным работам	24	12	12		
Проработка лекционного материала	48	30	18		
Подготовка к практическим занятиям, семинарам	72	36	36		

Всего (без экзамена)	252	126	126
Подготовка и сдача экзамена	36		36
Общая трудоемкость, ч	288	126	162
Зачетные Единицы	8.0	3.5	4.5

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Таолица 5.1 Таэдолы диециплины и вид		1				
Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Лаб. раб., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
	1 cei	местр				
1 Механика	12	12	8	50	82	OK-10
2 Молекулярная физика и термодинамика	6	6	4	28	44	OK-10
Итого за семестр	18	18	12	78	126	
	2 cei	местр				
3 Электричество	10	8	4	22	44	OK-10
4 Электромагнетизм	8	6	4	22	40	OK-10
5 Колебания и волны	10	6	4	22	42	OK-10
Итого за семестр	28	20	12	66	126	
Итого	46	38	24	144	252	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

таолица 3.2 Содержани	с разделов дисциплин (по лекциим)		
Названия разделов	Содержание разделов дисциплины по лекциям	Трудоемкость, ч	Формируемые компетенции
	1 семестр		
1 Механика	Основные кинематические характеристики движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением. Инерциальные и неинерциальные системы отсчета. Законы Ньютона. Масса, импульс, сила. Закон сохранения импульса. Кинетическая энергия. Консервативные силы и системы. Потенциальная энергия. Связь между потенциальной энергией и силой. Закон сохранения механической энергии. Динамика вращательного движения твёрдого тела.	12	OK-10

	Момент инерции. Момент силы. Момент импульса. Закон сохранения момента импульса.		
	Итого	12	
2 Молекулярная физика и термодинамика	Уравнения состояния идеального газа. Уравнение Майера. Теплоемкость идеальных газов, число степеней свободы. Изопроцессы идеального газа. Классические статистики. Функция распределения Максвелла по проекциям и абсолютным значениям скоростей. Барометрическая формула. Функция распределения Больцмана. Термодинамика. Первое начало термодинамики. Обратимые и необратимые процессы. Цикл Карно. К.п.д. обратимых и необратимых циклов. Термодинамические функции состояния. Энтропия. Изменение энтропии при обратимых и необратимых процессах. Второе начало термодинамики.	6	OK-10
	Итого	6	
Итого за семестр		18	
	2 семестр		1
3 Электричество	Электрическое поле. Напряженность и потенциал электрического поля. Связь между напряжённостью и потенциалом. Принцип суперпозиции электрических полей. Теорема Гаусса и ее применение для расчета электрических полей. Поляризация диэлектриков. Относительная диэлектрическая проницаемость. Электрическое смещение. Теорема о циркуляции вектора напряжённости электростатического поля. Поле внутри проводника и у его поверхности. Распределение заряда в проводнике. Электроемкость уединенного проводника. Конденсаторы. Энергия электрического поля. Электрический ток. Плотность тока. Законы Ома и Джоуля-Ленца в дифференциальной форме. Мощность тока. К.п.д. источника тока. Законы Кирхгофа для цепей постоянного тока.	10	OK-10
4 Электромагнетизм	Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчёту магнитных полей. Движение заряженных частиц в электромагнитных полях. Теорема Гаусса для вектора магнитной индукции. Теорема о циркуляции вектора магнитной индукции и её применение для расчёта полей. Сила Ампера. Сила Лоренца. Напряжённость магнитного поля. Магнитная проницаемость среды. Теорема о циркуляции вектора напряжённости магнитного поля. Ферромагнетизм. Работа по перемещению проводника с током в магнитном поле. Явление электромагнитной индукции. Природа э.д.с. индукции. Явление самоиндукции. Индуктивность. Взаимная индукция. Энергия магнитного поля.	8	OK-10

	Итого	8	
5 Колебания и волны	Гармонические колебания. Механические колебания. Сложение гармонических колебаний. Свободные, вынужденные колебания. Явление резонанса. Электрические колебания. Квазистационарный ток. Собственная частота колебаний. Частота затухающих колебаний. Резонансная частота. Переменный ток. Волны в упругих средах. Плоские и сферические волны. Эффект Доплера. Электромагнитные волны. Энергетические характеристики электромагнитных волн.	10	OK-10
	Итого	10	
Итого за семестр		28	
Итого		46	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин					
	1	2	3	4	5	
Предшествующие дисциплины						
1 Высшая математика	+	+	+	+	+	
2 Механика	+				+	
3 Физика-1	+	+	+	+	+	
Последующие дисциплины						
1 Безопасность жизнедеятельности	+	+	+	+	+	
2 Физика-2	+	+	+	+	+	
3 Физика-1			+	+	+	

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

ии		Виды з			
Компетенции	Лек.	Прак. зан.	Лаб. раб.	Сам. раб.	Формы контроля
OK-10	+	+	+	+	Контрольная работа, Экзамен, Коллоквиум, Защита отчета, Отчет по лабораторной работе, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Трудоемкость,	Формируемые компетенции
	1 семестр		
1 Механика Кинематика равноускоренного вращения		4	ОК-10
	Определение момента инерции твердых тел	4	
	Итого	8	
2 Молекулярная физика	Изучение распределения Максвелла		ОК-10
и термодинамика	Итого	4	
Итого за семестр		12	
	2 семестр		
3 Электричество	Измерение удельного электрического сопротивления металлов	4	OK-10
	Итого	4	
4 Электромагнетизм	Изучение магнитного поля кругового тока	4	ОК-10
	Итого	4	
5 Колебания и волны	Изучение затухающих электромагнитных колебаний	4	OK-10
	Итого	4	
Итого за семестр		12	
Итого		24	

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
1 семестр			
1 Механика	Кинематика поступательного и вращательного движения материальной точки. Динамика поступательного и вращательного движения материальной точки и твердого тела. Сложное движение. Законы сохранения в механике	12	OK-10
	Итого	12	
2 Молекулярная физика	Уравнение состояния идеального газа. Изопроцес-	6	ОК-10

и термодинамика	сы. Распределения Максвелла и Больцмана. Средняя энергия молекул. Теплота. Теплоемкость. Внутренняя энергия и работа идеального газа. Первое начало термодинамики.		
	Итого	6	
Итого за семестр		18	
	2 семестр		
Закон Кулона. Напряжённость электрического поля. Теорема Гаусса. Потенциал электростатического поля. Энергия электрического поля. Разность потенциалов. Работа электростатического поля. Постоянный электрический ток. Закон Джоуля-Ленца.		8	OK-10
	Итого	8	
4 Электромагнетизм	Магнитное поле. Закон Био-Савара-Лапласа. Сила Ампера. Сила Лоренца. Электромагнитная индукция. Самоиндукция. Взаимная индукция. Энергия поля.	6	ОК-10
	Итого	6	
5 Колебания и волны	Гармонические колебания. Сложение гармонических колебаний. Затухающие, вынужденные колебания. Явление резонанса. Плоские, сферические волны. Эффект Доплера.	6	ОК-10
	Итого	6	
Итого за семестр		20	
Итого		38	

9. Самостоятельная работа
Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

табища 7.1 Виды самостолтельной расоты, грудоемкосты и формируемые компетенции				
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	1 семест	p		
1 Механика	Подготовка к практическим занятиям, семинарам	24	OK-10	Защита отчета, Колло-квиум, Контрольная работа, Отчет по лабора-
	Проработка лекционного материала	18		торной работе, Тест, Эк-замен
	Оформление отчетов по лабораторным работам	8		
	Итого	50		
2 Молекулярная физика и термодинамика	Подготовка к практическим занятиям, семина-	12	ОК-10	Защита отчета, Колло-квиум, Контрольная ра-

	рам			бота, Отчет по лабора-
	Проработка лекционного материала	12		торной работе, Тест, Эк-замен
	Оформление отчетов по лабораторным работам	4		
	Итого	28		
Итого за семестр		78		
	2 семест	p		
3 Электричество	Подготовка к практическим занятиям, семинарам	12	ОК-10	Защита отчета, Колло-квиум, Контрольная работа, Отчет по лабора-
	Проработка лекционного материала	6		торной работе, Тест, Эк-замен
	Оформление отчетов по лабораторным работам	4		
	Итого	22		
4 Электромагнетизм	Подготовка к практическим занятиям, семинарам	12	OK-10	Защита отчета, Колло- квиум, Контрольная ра- бота, Отчет по лабора-
	Проработка лекционного материала	6		торной работе, Тест, Эк-замен
	Оформление отчетов по лабораторным работам	4		
	Итого	22		
5 Колебания и волны	Подготовка к практическим занятиям, семинарам	12	OK-10	Защита отчета, Колло- квиум, Контрольная ра- бота, Отчет по лабора-
	Проработка лекционного материала	6	торной рабозамен	торной работе, Тест, Эк-замен
	Оформление отчетов по лабораторным работам	4		
	Итого	22		
Итого за семестр		66		
	Подготовка и сдача экза- мена	36		Экзамен
Итого		180		

10. Курсовая работа (проект)

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

	1- 71			
Элементы учебной	Максимальный	Максимальный	Максимальный	Всего за
деятельности	балл на 1-ую КТ с	балл за период	балл за период	семестр
	начала семестра	между 1КТ и 2КТ	между 2КТ и на	

			конец семестра	
	1	семестр		
Защита отчета	6	6	6	18
Коллоквиум	16	16	2	34
Контрольная работа	8	8	8	24
Отчет по лабораторной работе	2	2	2	6
Тест	6	6	6	18
Итого максимум за пери- од	38	38	24	100
Нарастающим итогом	38	76	100	100
	2	2 семестр		
Защита отчета	3	3		6
Коллоквиум	14	14		28
Контрольная работа	6	6	6	18
Отчет по лабораторной работе	2	2	2	6
Тест	4	4	4	12
Итого максимум за пери- од	29	29	12	70
Экзамен				30
Нарастающим итогом	29	58	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 - 69	

	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика: Учебное пособие [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2018. 436 с. Режим доступа: https://e.lanbook.com/book/98245. Загл. с экрана. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/98245, дата обращения: 13.06.2018.
- 2. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика [Электронный ресурс] : учеб. пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 500 с. Режим доступа: https://e.lanbook.com/book/98246. Загл. с экрана. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/98246, дата обращения: 13.06.2018.

12.2. Дополнительная литература

- 1. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 292 с. Режим доступа: https://e.lanbook.com/book/103195. Загл. с экрана. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/103195, дата обращения: 13.06.2018.
- 2. Иродов, И.Е. Задачи по общей физике: Учебное пособие [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2018. 420 с. Режим доступа: https://e.lanbook.com/book/99230. Загл. с экрана [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/99230, дата обращения: 13.06.2018.

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Механика: Учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе / Грибов Ю. А., Зенин А. А. 2018. 64 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7662, дата обращения: 13.06.2018.
- 2. Молекулярная физика и термодинамика: Учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе / Бурдовицин В. А. 2018. 85 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7520, дата обращения: 13.06.2018.
- 3. Электричество и магнетизм: Учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе / Бурачевский Ю. А. 2018. 137 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7729, дата обращения: 13.06.2018.
- 4. Колебания и волны: Учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе / Климов А. С., Медовник А. В., Юшков Ю. Г. 2018. 114 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7652, дата обращения: 13.06.2018.
- 5. Кинематика равноускоренного вращения: Методические указания к лабораторной работе / Бурдовицин В. А., Троян Л. А. 2012. 13 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/923, дата обращения: 13.06.2018.
- 6. Определение момента инерции твердых тел: Руководство к лабораторной работе по физике / Тюньков А. В., Грибов Ю. 2016. 12 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6692, дата обращения: 13.06.2018.
- 7. Изучение распределения Максвелла: Методические указания к лабораторной работе / Бурдовицин В. А. 2018. 9 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7643, дата обращения: 13.06.2018.
- 8. Измерение удельного электрического сопротивления металлов: Методические указания к лабораторной работе / Иванова Е. В., Медовник А. В. 2018. 7 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7645, дата обращения: 13.06.2018.
- 9. Изучение магнитного поля кругового тока: Методические указания к лабораторной работе / Иванова Е. В., Медовник А. В. 2018. 13 с. [Электронный ресурс] Режим доступа:

https://edu.tusur.ru/publications/7646, дата обращения: 13.06.2018.

10. Изучение затухающих электромагнитных колебаний: Методические указания к лабораторной работе / Бурдовицин В. А. - 2018. 14 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/7641, дата обращения: 13.06.2018.

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется использовать базы данных, информационносправочные и поисковые системы, к которым у ТУСУРа есть доступ https://lib.tusur.ru/resursy/bazy-dannyh

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Учебная аудитория

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 222 ауд.

Описание имеющегося оборудования:

- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение не требуется.

Учебная аудитория

учебная аудитория для проведения занятий лекционного типа, учебная аудитория для проведения занятий практического типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 130 ауд.

Описание имеющегося оборудования:

- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение не требуется.

13.1.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория электричества и магнетизма

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 219 ауд.

Описание имеющегося оборудования:

- Лабораторный макет «Электричество и магнетизм» (12 шт.);
- Персональный компьютер (12 шт.);
- Контроллер измерений (12 шт.);
- Доска белая для письма маркером;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- ASIMEC
- LibreOffice
- Microsoft Windows 7 Pro
- Расчет погрешностей физических измерений

Лаборатория механики и молекулярной физики

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 232 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты: «Молекулярная физика» (10 шт.), «Маятник Обербека» (10 шт.), «Машина Атвуда» (3 шт.), «Момент инерции» (4 шт.);
 - Персональный компьютер (10 шт.);
 - Контроллер измерений (10 шт.);
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- LibreOffice
- Microsoft Windows 7 Pro
- Расчет погрешностей физических измерений

Лаборатория термодинамики

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 74, 223 ауд.

Описание имеющегося оборудования:

- Лабораторный макет по термодинамике (6 шт.);
- Персональный компьютер;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- LibreOffice
- Microsoft Windows 7 Pro
- Расчет погрешностей физических измерений

13.1.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;

- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

Точка движется из центра спирали с равномерно убывающей скоростью. При этом величина полного ускорения точки ...

Варианты ответов: 1. уменьшается

- 2. увеличивается
- 3. не изменяется
- 4. равна нулю

На абсолютно твердое тело действует постоянный момент сил. Какие из перечисленных ниже величин изменяются по линейному закону?

Варианты ответов:

- 1. угловая скорость и угловое ускорение
- 2. момент инерции и момент импульса
- 3. угловая скорость и момент инерции

4. угловая скорость и момент импульса

Величина момента импульса тела изменяется с течением времени по закону L=t(t+2) (в единицах СИ). Если в момент времени 2 с угловое ускорение составляет 3 рад/с^2, то момент инерции тела (в единицах СИ) равен ...

Варианты ответов: 1. 2

- 2. 1
- 3.0,5
- 4.4

На концах невесомого стержня закреплены два маленьких массивных шарика. Стержень может вращаться в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Стержень раскрутили до угловой скорости ω. Под действием трения стержень остановился, при этом выделилось 4 Дж теплоты.

Если стержень раскрутить до угловой скорости $\omega' = \omega/2$, то при остановке стержня выделится количество теплоты (в Дж), равное ...

Варианты ответов: 1. 0,5

- $2.\overline{2}$
- 3. 1
- 4.4

Тепловая машина работает по циклу Карно. Если температуру нагревателя и холодильника уменьшить на одинаковую величину ΔT , то КПД цикла ...

Варианты ответов: 1. увеличится

- 2. не изменится
- 3. уменьшится
- 4. для ответа недостаточно данных

Во сколько раз увеличится среднеквадратическая скорость молекул идеального газа при повышении абсолютной температуры в 4 раза?

Варианты ответов:

- 1. не изменится
- 2. 0.5
- 3.2
- 4.4

От какой из приведенных ниже величин, характеризующих молекулы, зависит давление идеального газа?

Варианты ответов: 1. силы притяжения между молекулами

- 2. кинетической энергии молекул
- 3. силы отталкивания между молекулами
- 4. потенциальной энергии взаимодействия молекул

Для изолированной системы в равновесном состоянии энтропия системы...

Варианты ответов:

- 1. минимальна
- 2. максимальна
- 3. имеет среднее арифметическое значение
- 4. имеет отрицательное значение

Вектор напряженности электростатического поля, созданного между обкладками плоского конденсатора направлен...

Варианты ответов:

- 1. от отрицательной обкладки к положительной
- 2. в сторону возрастания потенциала
- 3. параллельно обкладкам
- 4. в сторону убывания потенциала

Точечный заряд +q находится в центре сферической поверхности. Если добавить заряд -q внутрь сферической поверхности, то поток вектора напряженности электрического поля через поверхность сферы...

Варианты ответов:

- 1. увеличится
- 2. уменьшится
- 3. равен нулю
- 4. не изменится

Магнитный поток сквозь катушку, состоящую из 10 витков, изменяется по закону Φ =t(2-t) мВб. Чему равна ЭДС индукции, возникающая в катушке в момент времени t=3 с? Ответ представить в миливольтах.

Варианты ответов:

- 1.40
- 2.10
- 3.20
- 4.30

Заряженная частица влетает в однородное магнитное поле перпендикулярно магнитным силовым линиям. Траекторией движения частицы является...

Варианты ответов:

- 1. прямая
- 2. парабола
- 3. спираль
- 4. окружность

Как связаны между собой амплитуда A и энергия W, переносимая волной?

Варианты ответов: 1. Энергия (W) пропорциональна амплитуде (A) в 4-ой степени

- 2. Энергия (W) пропорциональна амплитуде (A)
- 3. Энергия (W) пропорциональна квадрату амплитуды (A)
- 4. Энергия (W) пропорциональна амплитуде (A) в 3-ой степени

Ёмкость колебательного контура радиопередатчика уменьшили с 1000 до 250 пФ. Как при этом изменилась длина излучаемых электромагнитных волн?

Варианты ответов: 1. уменьшилась в 4 раза

- 2. уменьшилась в 2 раза
- 3. увеличилась в 4 раза
- 4. не изменилась

При резонансе...

Варианты ответов: 1. резко растет частота колебаний

- 2. колебания затухают
- 3. частота колебаний равна нулю
- 4. совпадает частота собственных и вынужденных колебаний

Варианты ответов:

Как называются волны, в которых колебания частиц происходят в перпендикулярной плоскости к направлению распространения волн?

Варианты ответов:

- 1. поперечные
- 2. продольные
- 3. собственные
- 4. когерентные

При наблюдении интерференции фиолетового света в опыте Юнга расстояние между соседними темными полосами на экране равно 2 мм. Если источник фиолетового света заменить источником красного света, длина волны которого в 1,5 раза больше, то это расстояние станет равным ... мм.

Варианты ответов: 1. 1,33

- 2.3
- 3. 1
- 4. 1,5

Пластинку из оптически активного вещества толщиной d=2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол 30о. Поле зрения поляриметра станет совершенно темным при минимальной толщине (в мм) пластинки, равной ...

Варианты ответов: 1. 2

- 2.4
- 3.6
- 4.8

На диафрагму с круглым отверстием радиусом 2 мм падает нормально параллельный пучок света длиной волны 0,5 мкм. На пути лучей, прошедших через отверстие, на расстоянии 1 м помещают экран. В отверстии диафрагмы для точки на экране укладываются зон Френеля.

Варианты ответов: 1. 8

- 2.4
- 3.9
- 4.5

По мере нагревания тела его свечение изменяется следующим образом. При комнатной температуре свечение в видимой области спектра не наблюдается. По мере повышения температуры тело начинает светиться малиновым цветом, переходящим в красный цвет («красное каление»), а затем в белый («белое каление»). Закономерности изменения цвета свечения тела при нагревании объясняются

Варианты ответов: 1. законом Стефана-Больцмана

- 2. законом Кирхгофа
- 3. из приведенных вариантов нет верного
- 4. законами смещения Вина

14.1.2. Экзаменационные вопросы

1 Электричество.

- 1. Электрическое поле. Напряжённость электрического поля. Силовые линии. Принцип суперпозиции электрических полей.
- 2. Теорема Остроградского-Гаусса для вектора напряжённости электрического поля. Поле бесконечной однородно заряженной плоскости.
- 3. Потенциал. Работа сил электростатического поля. Циркуляция вектора напряжённости электростатического поля.
- 4. Связь между напряжённостью электростатического поля и потенциалом. Расчет разности потенциалов между точками поля (образованного бесконечной заряженной плоскостью, двумя бесконечными заряженными плоскостями, сферической поверхностью, проводящим шаром).
 - 5. Поляризация диэлектриков.
 - 6. Изменение векторов Е и D на границе раздела двух диэлектриков.
- 7. Распределение электрических зарядов на проводнике. Напряжённость поля вблизи поверхности заряженного проводника.
 - 8. Электродвижущая сила. Обобщённый закон Ома для неоднородного участка цепи.
 - 9. Работа, мощность, Закон Джоуля-Ленца.
 - 10. Разветвлённые цепи. Правила Кирхгофа.
 - 2 Электромагнетизм.
- 1. Статическое магнитное поле в вакууме. Вектор магнитной индукции. Закон Био-Савара-Лапласа.
 - 2. Магнитное поле кругового тока. Магнитное поле движущегося заряда.
 - 3. Закон Ампера. Сила, действующая на проводник с током в магнитном поле.
 - 4. Сила Лоренца. Движение заряженной частицы в однородном магнитном поле.
 - 5. Эффект Холла.
 - 6. Циркуляция вектора магнитной индукции.
 - 7. Работа по перемещению проводника и контура с током в магнитном поле.
 - 8. Магнитное поле в веществе. Намагниченность и напряжённость магнитного поля.
 - 9. Магнитные моменты электронов и атомов.
 - 10. Электродвижущая сила (э.д.с.) индукции. Природа явления электромагнитной индукции.
 - 11. Явление самоиндукции. Взаимная индукция.
 - 12. Энергия магнитного поля.
 - 13. Вихревое электрическое поле.
 - 14. Уравнения Максвелла.
 - 3 Колебания и волны.
 - 1. Характеристики гармонических колебаний.
 - 2. Сложение гармонических колебаний.
- 3. Квазистационарные токи. Свободные электромагнитные колебания в контуре без активного сопротивления.
 - 4. Свободные затухающие электрические колебания в контуре.
 - 5. Вынужденные электрические колебания. Явление резонанса. Переменный ток.
 - 6. Уравнения плоской и сферической волн.
 - 7. Наложение (интерференция) волн. Стоячие волны.
 - 8. Эффект Доплера для звуковых волн. Оптический эффект Доплера.
 - 9. Электромагнитные волны.
 - 10. Энергия электромагнитной волны. Интенсивность и импульс электромагнитной волны.

14.1.3. Темы контрольных работ

- 1 Механика.
- 2 Молекулярная физика и термодинамика.
- 3 Электричество.
- 4 Электромагнетизм.
- 5 Колебания и волны.

14.1.4. Темы коллоквиумов

- 1 Механика.
- 2 Молекулярная физика и термодинамика.
- 3 Электричество.
- 4 Электромагнетизм.
- 5 Колебания и волны.

14.1.5. Темы лабораторных работ

Кинематика равноускоренного вращения

Определение момента инерции твердых тел

Изучение распределения Максвелла

Измерение удельного электрического сопротивления металлов

Изучение магнитного поля кругового тока

Изучение затухающих электромагнитных колебаний

14.1.6. Зачёт

1 Механика.

- 1. Кинематика поступательного движения.
- 2. Кинематика вращательного движения.
- 3. Динамика материальной точки.
- 4. Кинетическая энергия. Работа и мощность.
- 5. Консервативные силы. Потенциальная энергия, связь между потенциальной энергией и силой.
- 6. Основное уравнение динамики вращательного движения относительно неподвижной точки.
 - 7. Уравнение динамики вращательного движения относительно неподвижной оси.
 - 8. Момент инерции, теорема Штейнера.
 - 9. Закон сохранения механической энергии.
 - 10. Закон сохранения момента импульса.
 - 2 Молекулярная физика и термодинамика.
 - 1. Внутренняя энергия. Теплота и работа. Первое начало термодинамики.
 - 2. Классические статистики (функция распределения Максвелла).
- 3. Наиболее вероятная, средняя квадратичная и средняя арифметическая скорости молекул газа.
 - 4. Барометрическая формула. Распределение Больцмана.
 - 5. Теплоёмкость газа. Формула Майера.
 - 6. Уравнение состояния идеального газа. Изопроцессы.
 - 7. Адиабатический процесс. Политропические процессы.
 - 8. Обратимый цикл Карно.
- 9. Изменение энтропии при обратимых и необратимых процессах. Второе начало термодинамики.
 - 10. Энтропия. Физический и статистический смысл энтропии.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 — Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

Категории	Виды дополнительных оценочных	Формы контроля и оценки
обучающихся	материалов	результатов обучения

С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.