МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ

Проректор по учебной работе

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович

Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Полупроводниковые устройства СВЧ-диапазона

Уровень образования: высшее образование - магистратура

Направление подготовки (специальность): 09.04.01 Информатика и вычислительная техника

Направленность (профиль): Автоматизация проектирования микро- и наноэлектронных

устройств для радиотехнических систем

Форма обучения: очная

Факультет: ФВС, Факультет вычислительных систем

Кафедра: КСУП, Кафедра компьютерных систем в управлении и проектировании

Kypc: 1, 2 Семестр: 2, 3

Учебный план набора 2015 года

Распределение рабочего времени

№	Виды учебной деятельности	2 семестр	3 семестр	Всего	Единицы
1	Лекции	6	10	16	часов
2	Практические занятия	10	10	20	часов
3	Лабораторные работы	12	12	24	часов
	Всего аудиторных занятий	28	32	60	часов
4	Самостоятельная работа	44	40	84	часов
	Всего (без экзамена)	72	72	144	часов
5	Подготовка и сдача экзамена		36	36	часов
Оби	цая трудоемкость	72	108	180	часов
		2	3	5	3.E

Зачет: 2 семестр Экзамен: 3 семестр

2

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 09.04.01 Информатика и вычислительная техника, утвержденного 2014-10-30 года, рассмотрена и утверждена на заседании кафедры «_16_» _января _ 2017 года, протокол № 11.

Разработчики:	
Доцент каф. КСУП	Черкашин М. В.
Заведующий обеспечивающей каф. КСУП	Шурыгин Ю. А.
Рабочая программа согласована с фанаправления подготовки (специальност	акультетом, профилирующей и выпускающей кафедрами ги).
Декан ФВС	Козлова Л. А.
Заведующий выпускающей каф. КСУП	Шурыгин Ю. А.
Эксперты:	
Доцент каф. КСУП	Черкашин M. B.

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Основная <u>цель</u> данного курса состоит в изучении общих принципов построения и работы полупроводниковых устройств СВЧ диапазона (функциональных узлов), входящих в состав радиоэлектронных и $\$ и $\$ и $\$ и радиотехнических систем (РЭС).

1.2. Задачи дисциплины

В результате изучения дисциплины студенты должны

- <u>изучить</u> теоретические основы принципов построения и работы функциональных узлов, входящих в состав СВЧ РЭС; научиться использовать типовые методики для их расчета;
 - иметь навыки расчета типовых схем функциональных узлов для СВЧ РЭС.
- В ходе изучения курса студенты должны ознакомиться с предоставленным курсом лекций, выполнить лабораторные и практические работы. При этом значительная часть материала отводится для самостоятельного изучения, что требует умения пользоваться дополнительной литературой, поиском требуемой информации в сети Интернет и творческий подход при решении заданных технических задач.

2. Место дисциплины в структуре ОПОП

Дисциплина «Полупроводниковые устройства СВЧ-диапазона (ПУ СВЧД)» (Б1.В.ОД.3) относится к вариативной части обязательных дисциплин базового блока (Б1.В) основной профессиональной образовательной программы по направлению 09.04.01 — Информатика и вычислительная техника с профилем подготовки «Автоматизация проектирования микро- и наноэлектронных устройств для радиотехнических систем».

Изучение дисциплины базируется на знании следующих курсов:

- Б1.В.ОД.1 Физические и технологические основы микро- и наноэлектроники;
- Б1.В.ОД.2 СВЧ цепи, элементы и модели.

Студенты должны знать основы аналоговой электроники, СВЧ цепи и сигналы, теорию многополюсников, назначение, структуру и принципы построения СВЧ РЭС, физические и технологические основы микро- и наноэлектроники.

Дисциплина является предшествующей для следующих курсов:

- Б1.В.ОД.4 Автоматизация проектирования СВЧ интегральных схем и систем на кристалле;
- Б1.В.ОД.5 Схемотехника СВЧ интегральных схем и систем на кристалле;
- Б1.В.ДВ.4 Построение приемо-передающих модулей на основе СВЧ интегральных схем и систем на кристалле \ Радиотехнические системы на основе СВЧ интегральных схем, а также для последующего выполнения НИР, преддипломной практики и подготовки выпускной квалификационной работы (магистерской диссертации).

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОК-7 способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности;
- -ОПК-1 способностью воспринимать математические, естественнонаучные, социальноэкономические и профессиональные знания, умением самостоятельно приобретать, развивать и применять их для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте;
- ПК-7 применением перспективных методов исследования и решения профессиональных задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий;
- ПСК-2 умением разрабатывать структурные и принципиальные схемы СВЧ МИС, выполнять оптимизацию их параметров с учетом существующих технологических маршрутов производства и технологических ограничений
- ПСК-3 умением разрабатывать модели элементов СВЧ МИС и выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР
- ПСК-5 умением разрабатывать конструкторскую документацию для производства СВЧ
 МИС

В результате изучения дисциплины студент должен:

Знать: принципы построения и работы функциональных узлов, входящих в состав СВЧ РЭС;

Уметь: использовать типовые методики расчета полупроводниковых СВЧ устройств (функциональных узлов);

Владеть: современными методами и программными средствами для расчета полупроводниковых СВЧ устройств.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5 зачетных единиц, представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

D	Doore weep	Семестры			
Виды учебной деятельности	Всего часов	2 семестр	3 семестр		
Аудиторные занятия (всего)	60	28	32		
1 Лекции	16	6	10		
2 Практические занятия	20	10	10		
3 Лабораторные работы	24	12	12		
4 Самостоятельная работа (всего)	84	44	40		
Всего (без экзамена)	144	72	72		
Подготовка и сдача экзамена	36		36		
Общая трудоемкость час.	180	72	108		
3.E,	5	2	3		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины		Лабораторные занятия	Практические занятия.	Курсовая работа (КР)	Самост. работа студента (СРС)	Всего часов (без экзам.)	Формируемые компетенции
			2 сем	естр				
1.	Принципы построения и структура типовых СВЧ РЭС	2				10	12	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
2.	Усилители ВЧ и СВЧ. Основные структурные схемы и принципы построения.	4	12	10		34	60	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5
			3 сем	естр				
3.	Генераторы ВЧ и СВЧ. Основные структурные схемы и принципы построения.		6	5		10	25	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5
4.	Преобразователи частоты. Основные структурные схемы и принципы построения.	2	6	5		10	23	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5

5.	Аттенюаторы ВЧ и СВЧ. Основные структурные схемы и принципы построения.	2			10	12	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5
6.	Фазовращатели ВЧ и СВЧ. Основные структурные схемы и принципы построения.	2			10	12	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5
Bcero:		16	24	20	84	144	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (по лекциям)

№ п/п	Наименование разделов	Содержание разделов	Трудо- емкость (час.)	Формируемые компетенции
		2 семестр	l	l
1.	Принципы построения и структура типовыхСВЧ РЭС	Назначение и состав радиотехнических (радиоэлектронных) систем СВЧ диапазона. Типовые структурные схемы приемнопередающего СВЧ тракта. Функциональные узлы СВЧ РЭС, их рабочие характеристики.	2	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
2.	Усилители. Основные структурные схемы и принципы построения.	Типы и основные характеристики усилителей СВЧ диапазона. Структурные схемы усилителей СВЧ диапазона. Усилительный каскад на биполярном транзисторе. Усилительный каскад на полевом транзисторе.	4	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
Итог	о за семестр		6	
		3 семестр		
3.	Генераторы ВЧ и СВЧ. Основные структурные схемы и принципы построения.	Типы и основные характеристики генераторов СВЧ диапазона. Структурные схемы генераторов СВЧ диапазона на полевых и биполярных транзисторах. Перестройка частоты в генераторах СВЧ диапазона.	4	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
4.	Преобразователи частоты. Основные структурные схемы и принципы построения.	Типы и основные характеристики преобразователей частоты. Структурные схемы преобразователей частоты (диодные, на биполярных транзисторах, на полевых транзисторах).	2	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
5.	Аттенюаторы ВЧ и СВЧ. Основные структурные схемы и принципы построения.	Типы и основные характеристики аттенюаторов СВЧ диапазона. Структурные схемы аттенюаторов (диодные, на биполярных транзисторах, на полевых транзисторах).	2	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
6.	Фазовращатели ВЧ и СВЧ. Основные структурные схемы и принципы построения.	Типы и основные характеристики фазовращателей СВЧ диапазона. Структурные схемы фазовращателей.	2	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
Итог	о за семестр		10	
Всего):		16	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

№ п/п	Наименование обеспечивающих (предыдущих) и обеспечиваемых (последующих) дисциплин	Номера разделов данной дисципли табл.5.1, для которых необходи изучение обеспечивающих (предыд и обеспечиваемых (последующи дисциплин					
	Предшествующие дисц	иплинь	_	3			6
1.	Физические и технологические основы микро- и наноэлектроники	+					
2.	СВЧ цепи, элементы и модели	+	+	+	+	+	+
	Последующие дисциг	ілины					
1.	Автоматизация проектирования СВЧ интегральных схем и систем на кристалле		+	+	+	+	+
2.	Схемотехника СВЧ интегральных схем и систем на кристалле	+	+	+	+	+	+
3.	Построение приемо-передающих модулей на основе СВЧ интегральных схем и систем на кристалле \ Радиотехнические системы на основе СВЧ интегральных схем	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5.4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

дисциплины						
Перечень		l	Виды за	нятий		Формы контроля по всем видам занятий
компетенций	Л	ЛР	ПР	КР	CPC	Формы контроля по всем видам занятии
ОК-7	+	+	+		+	конспект лекций; отчет по лабораторной работе; расчетное задание по практике; реферат; доклад на занятии; зачет; экзамен
ОПК-1	+	+	+		+	конспект лекций; отчет по лабораторной работе; расчетное задание по практике; реферат; доклад на занятии; зачет; экзамен
ПК-7	+	+	+		+	конспект лекций; отчет по лабораторной работе; расчетное задание по практике; реферат; доклад на занятии; зачет; экзамен
ПСК-2	+	+	+		+	конспект лекций; отчет по лабораторной работе; расчетное задание по практике; реферат; доклад на занятии; зачет; экзамен
ПСК-3	+	+	+		+	расчетное задание по практике; зачет; экзамен
ПСК-5			+		+	

<u>Сокращения</u>: Л – лекция, ПР – практические занятия, ЛР – лабораторные работы, КР – курсовая работа, СРС – самостоятельная работа студента

6. Интерактивные методы и формы организации обучения

Таблица 6.1 – Технологии интерактивного обучения при разных формах

Формы и методы организации обучения	Лекции	ЛР	ПР	КР	CPC	Всего
1. Занятия с выступлением студента в роли обучающего	4				2	6
Всего интерактивных занятий	4				2	6

Для формирования компетенций ОК-1 и ПК-7 используются следующие формы и методы обучения:

- лекционные занятия проводятся с использованием мультимедийной презентации и, по возможности, интерактивной доски;
- заключительная лекция проводится в форме лекции с выступлением студентов в роли обучающего, на которой отдельные группы студентов выступают с небольшими докладами-рефератами (с презентацией) по заранее подготовленным темам (перечень тем для самостоятельного изучения и обсуждения предоставляется студентам на первой лекции см. п. 10 настоящей рабочей программы). По окончании выступления проводится обсуждение представленного материала (методические рекомендации по проведению данной лекции представлены в п.14.2 настоящей рабочей программы);
- в течение семестра студенты самостоятельно изучают отдельные темы, полученный материал оформляется в виде реферата. Наиболее интересные рефераты представляются в виде докладов (с презентацией) на заключительной лекции.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7. 1 – Наименование лабораторных работ

№ п/п	№ раздела дисциплины из табл. 5.1	Трудо- емкость (час.)	Формируемые компетенции	
		2 семестр		
1.	2	Расчет и моделирование схемы стабилизации режима по постоянному току усилительного каскада на биполярном транзисторе	6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
2.	2	Расчет и моделирование усилительного каскада на биполярном транзисторе по переменному току	6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
Всег	о за семестр		12	
		3 семестр		
3.	3	Моделирование схемы смесителя	6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
4.	4 Моделирование схемы генератора СВЧ на полевом транзисторе		6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3
Всег	о за семестр		12	
	о часов		24	

Лабораторные работы выполняются согласно учебно-методическому пособию [4], стр. 5-6.

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8. 1 – Наименование практических занятий (семинаров)

№	№ раздела	Наименование темы практических занятий	Трудо-	Формируемые
п/п	дисциплины	паименование темы практических занятни	емкость	компетенции

	из табл. 5.1		(час.)								
	2 семестр										
1.	1	Расчет параметров СВЧ РЭС (бюджет)	2	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3							
2.		Расчет схемы стабилизации усилительного каскада по постоянному току	4	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5							
3.	2	Расчет схемы и параметров СВЧ усилителя	4	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5							
Bcer	о за семестр		10								
	_	3 семестр		_							
5.	4	Расчет схемы и параметров СВЧ генератора	4	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5							
6.	5	Расчет схемы и параметров смесителя	6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5							
Bcer	го за семестр	10									
Bcer	о часов		20								

Практические работы выполняются согласно учебно-методическому пособию [4], стр. 3-4.

9. Самостоятельная работа

<u>Целью</u> самостоятельной работы является углубленное изучение теоретического материала, самоподготовка к выполнению лабораторных работ и практических занятий, выполнение реферата по выбранной теме.

Задачи, выносимые на самостоятельную работу:

- 1. самоподготовка к лекционным занятиям, практическим занятиям и лабораторным работам;
- 2. изучение дополнительного теоретического материала, выходящего за пределы лекционного курса, написание реферата и подготовка презентации по заданной тематике;
- 3. подготовка к экзамену.

Таблица 9.1 – Детализация видов самостоятельной работы студентов

№ п/п	№ раздела дисциплины из табл. 5.1	Виды самостоятельной работы	Трудо- емкость (час.) семестр		Формируемые компетенции	Форма контроля выполнения работы
			2	3		
1.	1,2,3,4,5,6	Проработка лекционного материала, подготовка конспектов по заданным вопросам	14	14	ОК-7, ОПК-1, ПК-7	Конспект самоподготовки, опрос на лекциях, ответы на вопросы при защите лабораторных работ
2.	2,3,4,5,6	Подготовка реферата по заданной теме, оформление презентации	12	12	ОК-7, ОПК-1, ПК-7	Реферат, презентация, защита реферата
3.	2,3,4	Подготовка к лабораторным работам, оформление отчета	8	8	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3	Отчет и защита лабораторных работ

4.	2,3,4	Подготовка к практическим работам	6	6	ОК-7, ОПК-1, ПК-7, ПСК-2, ПСК-3, ПСК-5	Расчетное задание
5.	1,2,3,4,5,6	Подготовка к экзамену (зачету)	4	36	ОК-7, ОПК-1, ПК-7	Зачет \ Экзамен
	Всего часов (без экзамена)		44	76 (40)		
Ито	Итого (без экзамена)		12	0 (84)		

Темы дисциплины, выносимые на самостоятельное изучение.

На самостоятельную проработку теоретического материала выносятся следующие темы:

- 1. Состав и назначение функциональных узлов СВЧ радиотракта. Типовые схемы и характеристики.
- 2. Усилители мощности СВЧ диапазона. Ключевые усилители классов Е и F. Методы уменьшения нелинейных искажений.
- 3. Устройства управления амплитудой и фазой сигнала. Типовые структурные схемы и характеристики.

Темы дисциплины, выносимые для подготовки к лекции, на которой студенты выступают в роли обучающего:

- 1. Усилители мощности СВЧ диапазона. Принципы работы и типовые схемы.
- 2. Фазовращатели СВЧ диапазона.
- 3. Аттенюаторы СВЧ диапазона.

Для выполнения самостоятельной работы необходимо использовать литературу [1-3], а также материал из компьютерной сети INTERNET (см. раздел 12.4).

Общие рекомендации по выполнению самостоятельной работы находятся в учебно-методическом пособии [4], стр.7.

10. Курсовая работа (проект)

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости студентов

Оценка объема и качества знаний студентов при внутрисеместровой и промежуточной аттестации определяется в соответствии с «Положением о порядке использования рейтинговой системы для оценки успеваемости студентов (приказ ректора от 25.02.2010 № 1902).

В течение семестра студенты должны выполнить практические и лабораторные работы, подготовить выступление (реферат) по одной из тем (см.п. 10 настоящей рабочей программы). Лабораторные работы выполняются согласно расписанию учебных занятий. Текущий контроль теоретических знаний осуществляется в виде опроса по лекционному материалу. Для проверки самостоятельной работы предусмотрена защита лабораторных работ, подготовка реферата и выступление на лекции.

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимал балл за 1 начала сем	КТ с	Максималі за перио 1КТ и	д между	Максима балл за г между 2Н конец сег	іериод СТ и на	Всего за семестр
1. Выполнение лабораторных работ			ЛР1	15	ЛР2	15	30
2. Выполнение практических работ	ПР1	5	ПР2	10	ПР3	10	25
3. Выполнение индивидуальных заданий	5		:	5	5		15
4. Выступление на лекции (доклад)					9		9
5. Элемент своевременности (посещение лекций, ПР и ЛР)	2			2	2		6
Итого максимум за период	12		3	32	41		85
Сдача зачета							15
Нарастающим итогом	12		4	4	85		100

Замечания:

- 1) задание на каждую следующую лабораторную работу выдаются после защиты текущей лабораторной работы;
- 2) при выполнении лабораторный работы в неустановленный срок за каждую неделю просрочки максимальный балл уменьшается на единицу;

Проведение зачета (во 2 семестре) и экзамена (в 3 семестре) является обязательным. Независимо от набранной в семестре текущей суммы баллов, обязательным условием для допуска к зачету (экзамену) является выполнение студентом всех необходимых по рабочей программе видов занятий: сдача индивидуальных расчетных (практических) заданий, защиты всех лабораторных работ и реферата.

Экзаменационная составляющая балльной оценки входит в итоговую сумму баллов. В экзаменационном билете 3 вопроса: два теоретических и один практический. За каждый теоретический вопрос можно получить до 5 баллов, за практический – до 10 (5) баллов.

Неудовлетворительной сдачей зачета (экзамена) считается экзаменационная составляющая менее 5 баллов. При неудовлетворительной сдаче экзамена (<5 баллов) или неявке по неуважительной причине на зачет (экзамен) экзаменационная составляющая рейтинга приравнивается к нулю. В этом случае студент обязан согласно порядку, установленному в университете, пересдать зачет (экзамен).

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (хорошо) (зачтено)	85 - 89	В (очень хорошо)
	75 - 84	С (хорошо)
	70 - 74	D (
2 ()	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. **Шостак, А. С.** Антенны и устройства СВЧ. Часть 1. Устройства СВЧ: Учебное пособие [электронный ресурс] / Шостак А. С. — Томск: ТУСУР, 2012. — 124 с. — режим доступа: https://edu.tusur.ru/publications/1219.

12.2. Дополнительная литература

- 2. **Воскресенский** Д. И. и др. Устройства СВЧ и антенны: Учебник для вузов / под ред. Д. И. Воскресенского. 2-е изд., перераб. и доп. М.: Радиотехника. 2006. 375 с. **ISBN** 5-88070-086-0 (**20** экз.)
- 3. **Каплун В. А.** и др. Радиотехнические устройства и элементы радиосистем : Учебное пособие для вузов. 2-е изд., стереотип. М.: Высшая школа. 2005. 293 с. **ISBN** 5-06-004043-7 (**60** экз.)

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

4. **Черкашин М.В.** Полупроводниковые устройства СВЧ диапазона. учебно-методическое пособие по выполнению лабораторных, практических и самостоятельной работы. – Томск: ТУСУР.— 2015. [электронный ресурс]. – режим доступа: http://new.kcup.tusur.ru/library/poluprovodnikovye-ustrojstva-svch-diapazona-pu-svch (практическая работа - стр.,3-4; лабораторные работы – стр.5-6, самостоятельная работа – стр.7)

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

- 1. Поисковые системы: http://www.google.com, http://www.yandex.ru, http://rambler.ru
- 2. Электронная база данных учебно-методических разработок каф. КСУП: http://new.kcup.tusur.ru/library
- 3. Доступ к электронным ресурсам на научно-образовательном портале университета: http://edu.tusur.ru/
- 4. Доступ к электронному каталогу библиотеки университета: http://lib.tusur.ru
- 5. Электронная библиотечная система «Лань» https://e.lanbook.com

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория 127 ФЭТ или 321 ФЭТ, с количеством посадочных мест не менее 20, оборудованная доской и стандартной учебной мебелью. Также имеется оборудование для демонстрации электронных презентаций (компьютер с установленным ПО, проектор и интерактивная доска).

Имеются наглядные пособия в виде электронных презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для практических занятий

Для проведения практических (семинарских) занятий используется учебная аудитория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 3 этаж, ауд. 326 ФЭТ. Состав оборудования: Учебная мебель; Доска магнитно-маркерная -1шт..

13.1.3. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных занятий используется учебная аудитория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 3 этаж, ауд. 321 ФЭТ.

Состав оборудования: учебная мебель; интерактивная доска; проектор; компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами с диагональю не менее 18" – 10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; Matlab v6.5

13.1.4. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 3 этаж, ауд. 326 ФЭТ.

Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационно-образовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Методические рекомендации по организации изучения дисциплины

Методические рекомендации по организации изучения дисциплины базируются на методиках, представленных в Положении о методах интерактивного обучения студентов по ФГОС ВО в техническом университете: для преподавателей ТУСУР: (http://old.tusur.ru/export/sites/ru.tusur.new/ru/education/documents/inside/12.8.doc)

14.1 Методические рекомендации по организации лекционного занятия с выступлением студентов в роли обучающего

Организационный этап.

На первой лекции студентам выдается перечень тем для заключительной лекции. В течение семестра студенты производят поиск и анализ информации по выбранной теме. Результаты изучения оформляются в виде доклада и презентации, которые за месяц до окончания семестра сдаются преподавателю. Проводится проверка представленного материала и необходимая корректировка. По одной теме могут выступать 2-3 человека. Заранее преподаватель и студенты оговаривают, кто и в какой последовательности будут излагать свой материал.

Основной этап.

В начале лекции преподаватель озвучивает вопросы, которые будут рассмотрены на данной лекции. Представляет выступающих студентов и оглашает правила результирующей оценки, получаемой на данной лекции: за выступление и ответы на вопросы докладчик может получить максимально 5 баллов, за активное участие в обсуждении (за «вдумчивые» вопросы) студент может получить также максимально 5 баллов.

«Студенты-лекторы» в определенном порядке выступают со своими докладами (продолжительность доклада — 7-10 минут). Остальные студенты составляют конспект, а после доклада задают вопросы выступающему и принимают участие в обсуждении представленного материала (5 минут на обсуждение каждого доклада). Преподаватель ведет учет и контроль заданных вопросов.

Этап рефлексии.

Преподаватель дает оценочное суждение выступлению и полученным ответам на предложенные вопросы.

15. Фонд оценочных средств

15.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении 1 к рабочей программе.

15.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 15.

Таблица 15 – Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения	
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка	
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)	
С нарушениями опорно-двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами	
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки	

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Приложение 1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВ	ЕРЖДАЮ
Пр	оректор і	ю учебной работе
		П. Е. Троян
‹	>>	20 г

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Полупроводниковые устройства СВЧ-диапазона

Уровень образования: высшее образование - магистратура
Направление подготовки (специальность): 09.04.01 Информатика и вычислительная техника
Направленность (профиль): Автоматизация проектирования микро- и наноэлектронных устройств для радиотехнических систем
Форма обучения: очная
Факультет: ФВС, Факультет вычислительных систем
Кафедра: КСУП, Кафедра компьютерных систем в управлении и проектировании
Курс: 1, 2

Семестр: **2**, **3**

Учебный план набора 2015 года

Разработчики:

- каф. КСУП Черкашин М. В.

Зачет: 2 семестр Экзамен: 3 семестр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенций
OK-7	способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности	Знать: принципы построения и работы функциональных узлов, входящих в состав СВЧ РЭС; Уметь: использовать типовые методики расчета
ОПК-1	способностью воспринимать математические, естественнонаучные, социально-экономические и профессиональные знания, умением самостоятельно приобретать, развивать и применять их для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте	полупроводниковых СВЧ устройств (функциональных узлов); Владеть: современными методами и программными средствами для расчета полупроводниковых СВЧ устройств.
ПК-7	применением перспективных методов исследования и решения профессиональных задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий	
ПСК-2	умением разрабатывать структурные и принципиальные схемы СВЧ МИС, выполнять оптимизацию их параметров с учетом существующих технологических маршрутов производства и технологических ограничений	
ПСК-3	умением разрабатывать модели элементов СВЧ МИС и выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР	
ПСК5	умением разрабатывать конструкторскую документацию для производства СВЧ МИС	

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом наблюдении

2 Реализация компетенций

2.1 Компетенция ПК-7

ПК-7: применение перспективных методов исследования и решения профессиональных задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий.

Для формирования компетенции ПК-7 необходимо осуществить ряд этапов.

Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Таблица 3 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	 Способы построения и работы функциональных узлов СВЧ РЭС Перспективные методы исследования профессиональных задач Мировые тенденции развития вычислительной техники и информационных технологий 	 Составлять математические модели и проводить анализ СВЧ цепей и их элементов Применять новые перспективные методы для решения профессиональных задач 	• Современными методами и программными средствами для расчета и анализа функциональных узлов СВЧ РЭС
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	Конспект лекцийДомашняя работаОтчет по практикеОтчет по лабораторной работе	Домашняя работаОтчет по практикеОтчет по лабораторной работеЗачет\Экзамен	Домашняя работаОтчет по практикеОтчет по лабораторной работеЗачет\Экзамен

	• Зачет\Экзамен	<u> </u>

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Способы построения и работы функциональных узлов СВЧ РЭС Перспективные методы исследования профессиональных задач Мировые тенденции развития вычислительной техники и информационных технологий 	• Самостоятельно формировать математические модели и проводить анализ СВЧ цепей и их элементов • Самостоятельно применять новые перспективные методы для решения профессиональных задач	• Современными методами и программными средствами для расчета и анализа функциональных узлов СВЧ РЭС на высоком профессиональном уровне
Хорошо (базовый уровень)	 Способы построения и работы функциональных узлов СВЧ РЭС Перспективные методы исследования профессиональных задач Мировые тенденции развития вычислительной техники и информационных технологий 	• Формировать математические модели и проводить анализ СВЧ цепей и их элементов при незначительном участии преподавателя • Применять новые перспективные методы для решения профессиональных задач при незначительном участии преподавателя	• Современными методами и программными средствами для расчета и анализа функциональных узлов СВЧ РЭС на хорошем уровне
Удовлетворительно (пороговый уровень)	 Способы построения и работы функциональных узлов СВЧ РЭС Перспективные методы исследования профессиональных задач Мировые тенденции развития вычислительной техники и информационных технологий 	• Формировать математические модели и проводить анализ СВЧ цепей и их элементов при непосредственном участии преподавателя • Применять новые перспективные методы для решения профессиональных задач при непосредственном участии преподавателя	• Современными методами и программными средствами для расчета и анализа функциональных узлов СВЧ РЭС на базовом уровне

2.2 Компетенция ОК-7

OK-7: способность самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности

Для формирования компетенции ОК-7 необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	• Методы работы с информационными и глобальными системами поиска научно-технической информации	• Приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний	• Навыками самостоятельной работы с информационными и глобальными системами поиска научно-технической информации
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	 Конспект лекций Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	Домашняя работаОтчет по практикеОтчет по лабораторной работеЗачет\Экзамен

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Основы методов сбора теоретических и эмпирических данных и их обработки Методы поиска научнотехнической информации в сети Imternet Порядок оформления и представления результатов проектной работы 	• Самостоятельно осуществлять выбор методов в соответствии с целями и задачами исследования • Планировать и осуществлять самостоятельную проектную (исследовательскую) работу	• Методами работы с научной литературой и глобальными информационными системами • Навыками работы с современными средствами вычислительной техники и программным обеспечением • Навыками по оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР
Хорошо (базовый уровень)	 Основы методов сбора теоретических и эмпирических данных и их обработки Методы поиска научнотехнической информации 	• Планировать и осуществлять самостоятельную проектную работу под наблюдением научного руководителя	 Методами работы с научной литературой и глобальными информационными системами Навыками по

	в сети Imternet • Порядок оформления и представления результатов проектной работы		оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР
Удовлетворительно (пороговый уровень)	 Методы поиска научно- технической информации в сети Imternet Порядок оформления и представления результатов проектной работы 	• Осуществлять проектную работу при непосредственном участии научного руководителя	• Навыками по оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР

2.3 Компетенция ОПК-1

ОПК-1: способность воспринимать математические, естественнонаучные, социальноэкономические и профессиональные знания, умением самостоятельно приобретать, развивать и применять их для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте

Для формирования компетенции ОПК-1 необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 7.

Таблица 7 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	 Методы работы с научно-исследовательской литературой, информационными системами Принципы, этапы и содержание работ для выполнения научно-исследовательской (проектной) работы 	• Приобретать, развивать и применять воспринимать математические, естественнонаучные, социально-экономические и профессиональные знания для решения практических задач	• Навыками самостоятельной работы с научно-исследовательской литературой, информационными системами
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	 Конспект лекций Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 8.

Таблица 8 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Основы методов сбора теоретических и эмпирических данных и их обработки Методы поиска научнотехнической информации в сети Imternet Порядок оформления и представления результатов проектной работы 	 Самостоятельно осуществлять выбор методов в соответствии с целями и задачами исследования Планировать и осуществлять самостоятельную проектную (исследовательскую) работу 	 Методами работы с научной литературой и глобальными информационными системами Навыками работы с современными средствами вычислительной техники и программным обеспечением Навыками по оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР
Хорошо (базовый уровень)	 Основы методов сбора теоретических и эмпирических данных и их обработки Методы поиска научнотехнической информации в сети Imternet Порядок оформления и представления результатов проектной работы 	• Планировать и осуществлять самостоятельную проектную работу под наблюдением научного руководителя	 Методами работы с научной литературой и глобальными информационными системами Навыками по оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР
Удовлетворительно (пороговый уровень)	 Методы поиска научно- технической информации в сети Imternet Порядок оформления и представления результатов проектной работы 	• Осуществлять проектную работу при непосредственном участии научного руководителя	• Навыками по оформлению результатов научного исследования в соответствии с требованиями ГОСТа и ОС ТУСУР

2.4 Компетенция ПСК-2

ПСК-2: умение разрабатывать структурные и принципиальные схемы СВЧ МИС, выполнять оптимизацию их параметров с учетом существующих технологических маршрутов производства и технологических ограничений

Для формирования компетенции ПСК-2 необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 9.

Таблица 9 – Этапы формирования компетенции и используемые средства оценивания

Состав		Знать	Уметь	Владеть
Содержание этапов	• Te	орию построения	• Разрабатывать	• Современными САПР
	радио	отехнических систем	структурные и	СВЧ устройств и цепей

	на основе СВЧ МИС • Типовые структурные и принципиальные схемы узлов радиотехнических систем выполненных виде СВЧ МИС • Методы параметрической оптимизации СВЧ цепей и устройств	принципиальные схемы СВЧ МИС Выполнять оптимизацию параметров СВЧ МИС с учетом существующих технологических маршрутов производства и технологических ограничений	• Навыками проектирования типовых узлов радиотехнических систем
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	 Конспект лекций Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 10.

Таблица 10 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	• Теорию построения радиотехнических систем на основе СВЧ МИС • Типовые структурные и принципиальные схемы узлов радиотехнических систем выполненных виде СВЧ МИС • Методы параметрической оптимизации СВЧ цепей и устройств	• Самостоятельно разрабатывать структурные и принципиальные схемы СВЧ МИС • Самостоятельно выполнять оптимизацию параметров СВЧ МИС с учетом существующих технологических маршрутов производства и технологических ограничений	• Современными САПР СВЧ устройств и цепей • Навыками проектирования типовых узлов радиотехнических систем
Хорошо (базовый уровень)	• Теорию построения радиотехнических систем на основе СВЧ МИС • Типовые структурные и принципиальные схемы узлов радиотехнических систем выполненных виде СВЧ МИС	 Разрабатывать структурные и принципиальные схемы СВЧ МИС при незначительном участии руководителя Выполнять оптимизацию параметров СВЧ МИС с учетом существующих технологических маршрутов производства и технологических 	• Современными САПР СВЧ устройств и цепей • Навыками проектирования типовых узлов радиотехнических систем на хорошем уровне

		ограничений при незначительном участии руководителя	
Удовлетворительно (пороговый уровень)	 Базовые принципы построения радиотехнических систем на основе СВЧ МИС Типовые схемы узлов СВЧ МИС 	• Выполнять типовые расчеты узлов радиотехнических систем при непосредственном участии руководителя	• Навыками проектирования типовых узлов радиотехнических систем на базовом уровне

2.5 Компетенция ПСК-3

ПСК-3: умение разрабатывать модели элементов СВЧ МИС и выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР

Для формирования компетенции ПСК-3 необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 11.

Таблица 11 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	 Принципы моделирования СВЧ МИС с помощью САПР Типовые модели компонентов СВЧ МИС 	 Разрабатывать модели элементов СВЧ МИС Выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР 	• Современными САПР СВЧ устройств и цепей • Навыками моделирования СВЧ МИС
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	 Конспект лекций Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 12.

Таблица 12 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Принципы моделирования СВЧ МИС с помощью САПР Типовые модели компонентов СВЧ МИС Ст 	 Самостоятельно разрабатывать модели элементов СВЧ МИС Самостоятельно выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР 	 Современными САПР СВЧ устройств и цепей Навыками моделирования СВЧ МИС на высоком уровне

Хорошо (базовый уровень)	 Принципы моделирования СВЧ МИС с помощью САПР Типовые модели компонентов СВЧ МИС 	 Разрабатывать модели элементов СВЧ МИС при незначительном участии руководителя Выполнять моделирование характеристик СВЧ МИС на основе применения современных САПР при незначительном участии руководителя 	 Современными САПР СВЧ устройств и цепей Навыками моделирования СВЧ МИС на хорошем уровне
Удовлетворительно (пороговый уровень)	 Базовые принципы моделирования СВЧ МИС Типовые модели элементов СВЧ МИС 	• Выполнять типовые расчеты при моделировании СВЧ МИС при непосредственном участии руководителя	• Базовыми навыками моделирования СВЧ схем с помощью современных САПР

2.6 Компетенция ПСК-5

ПСК-5: умение разрабатывать конструкторскую документацию для производства СВЧ МИС

Для формирования компетенции ПСК-5 необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 13.

Таблица 13 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	 Основные правила оформления конструкторской документации для производства СВЧ МИС согласно ЕСКД и ГОСТ Состав и содержание документации для производства СВЧ МИС 	• Разрабатывать конструкторскую документацию для производства СВЧ МИС	 Программными средствами для разработки конструкторской документации Навыками оформления конструкторской документации согласно требований ЕСКД и ГОСТ
Виды занятий	ЛекцияПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента	ПрактикаЛабораторная работаСамостоятельная работа студента
Используемые средства оценивания	 Конспект лекций Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	 Домашняя работа Отчет по практике Отчет по лабораторной работе Зачет\Экзамен 	Домашняя работаОтчет по практикеОтчет по лабораторной работеЗачет\Экзамен

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 14.

Таблица 14 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Основные правила оформления конструкторской документации для производства СВЧ МИС согласно ЕСКД и ГОСТ Состав и содержание документации для производства СВЧ МИС 	• Самостоятельно разрабатывать конструкторскую документацию для производства СВЧ МИС	 Программными средствами для разработки конструкторской документации на высоком уровне Навыками оформления конструкторской документации согласно требований ЕСКД и ГОСТ
Хорошо (базовый уровень)	 Основные правила оформления конструкторской документации для производства СВЧ МИС согласно ЕСКД и ГОСТ Состав и содержание документации для производства СВЧ МИС 	• Разрабатывать конструкторскую документацию для производства СВЧ МИС при незначительном участии руководителя	 Навыками оформления конструкторской документации согласно требований ЕСКД и ГОСТ Программными средствами для разработки конструкторской документации на хорошем уровне
Удовлетворительно (пороговый уровень)	• Состав и содержание документации для производства СВЧ МИС	• Разрабатывать конструкторскую документацию для производства СВЧ МИС при непосредственном участии руководителя	 Навыками оформления конструкторской документации согласно требований ЕСКД и ГОСТ Программными средствами для разработки конструкторской документации на базовом уровне

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

Темы дисциплины, выносимые на самостоятельное изучение.

На самостоятельную проработку теоретического материала выносятся следующие темы:

- 1. Состав и назначение функциональных узлов СВЧ радиотракта.
- 2. Типовые схемы и характеристики функциональных узлов СВЧ РЭС.
- 3. Усилители мощности СВЧ диапазона. Принципа работы и типовые схемы.
- 4. Ключевые усилители классов Е и Г. Методы уменьшения нелинейных искажений.
- 5. Устройства управления амплитудой и фазой сигнала. Типовые структурные схемы и характеристики.

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы: методические материалы, определяющие процедуры оценивания знаний, умений,

навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, согласно п. 12 рабочей программы.

4.1. Основная литература

1. **Шостак, А. С.** Антенны и устройства СВЧ. Часть 1. Устройства СВЧ: Учебное пособие [электронный ресурс] / Шостак А. С. — Томск: ТУСУР, 2012. — 124 с. — режим доступа: https://edu.tusur.ru/publications/1219.

4.2. Дополнительная литература

- 2. **Воскресенский** Д. И. и др. Устройства СВЧ и антенны: Учебник для вузов / под ред. Д. И. Воскресенского. 2-е изд., перераб. и доп. М.: Радиотехника. 2006. 375 с. **ISBN** 5-88070-086-0 (**20** экз.)
- 3. **Каплун В. А.** и др. Радиотехнические устройства и элементы радиосистем : Учебное пособие для вузов. 2-е изд., стереотип. М.: Высшая школа. 2005. 293 с. **ISBN** 5-06-004043-7 (**60** экз.)

4.3. Учебно-методические пособия

4. **Черкашин М.В.** Полупроводниковые устройства СВЧ диапазона. учебно-методическое пособие по выполнению лабораторных, практических и самостоятельной работы. – Томск: ТУСУР.— 2015. [электронный ресурс]. – режим доступа: http://new.kcup.tusur.ru/library/poluprovodnikovye-ustrojstva-svch-diapazona-pu-svch (практическая работа - стр.,3-4; лабораторные работы – стр.5-6, самостоятельная работа – стр.7)

4.4. Базы данных, информационно справочные и поисковые системы

- 1. Поисковые системы: http://www.yandex.ru, http://rambler.ru
- 2. Электронная база данных учебно-методических разработок каф. КСУП: http://new.kcup.tusur.ru/library
- 3. Доступ к электронным ресурсам на научно-образовательном портале университета: http://edu.tusur.ru/
- 4. Доступ к электронному каталогу библиотеки университета: http://lib.tusur.ru
- 5. Электронная библиотечная система «Лань» https://e.lanbook.com