МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		УТВЕРЖДАЮ		
Пр	орен	стор по учебной ра	бот	e
		П. Е. Т ₁	пос	H
‹ ‹	>>	20)]	Г

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Полупроводниковая светотехника

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): **11.03.03 Конструирование и технология электронных средств**

Направленность (профиль): Конструирование и технология наноэлектронных средств

Форма обучения: очная

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: КУДР, Кафедра конструирования узлов и деталей радиоэлектронной аппаратуры

Курс: **4** Семестр: **7**

Учебный план набора 2014 года

Распределение рабочего времени

$N_{\underline{0}}$	Виды учебной деятельности	7 семестр	Всего	Единицы
1	Лекции	36	36	часов
2	Лабораторные работы	56	56	часов
3	Всего аудиторных занятий	92	92	часов
4	Самостоятельная работа	52	52	часов
5	Всего (без экзамена)	144	144	часов
6	Подготовка и сдача экзамена	36	36	часов
7	Общая трудоемкость	180	180	часов
		5.0	5.0	3.E

Экзамен: 7 семестр

Рассмотрена	и одо	брена на зас	едании каф	редры
протокол №	194	от « 13 »	1	2017 г.

ЛИСТ СОГЛАСОВАНИЙ

	требований федерального государственного образо-
	ГОС ВО) по направлению подготовки (специально-
	пектронных средств, утвержденного 12 ноября 2015
года, рассмотрена и утверждена на заседании	кафедры «» 20 года, протокол
№	
Разработчики:	
Доцент каф. РЭТЭМ	В. С. Солдаткин
Старший преподаватель каф. КУДР	С. А. Артищев
Заведующий обеспечивающей каф. КУДР	А. Г. Почичнов
КУДР	А. Г. Лощилов
	тетом, профилирующей и выпускающей кафедрами
направления подготовки (специальности).	
Декан РКФ	Д. В. Озеркин
Заведующий выпускающей каф.	
КУДР	А. Г. Лощилов
Эксперт:	
Профессор каф KVЛР	С. Г. Еханин

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Подготовка бакалавра к самостоятельной профессиональной деятельности в исследовательской и производственной сфере по разработке и исследованию характеристик полупроводниковых светодиодов для осветительных устройств нового поколения

1.2. Задачи дисциплины

- Знакомство с физическими основами работы светодиода
- Изучение основной системы параметров полупроводниковых источников света
- Освоение средств измерения основных светотехнических и колориметрических
- параметров
- Знакомства с методами испытаний полупроводниковых источников свет
- Знакомство с классификацией источников света

2. Место дисциплины в структуре ОПОП

Дисциплина «Полупроводниковая светотехника» (Б1.В.ДВ.7.2) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются следующие дисциплины: Избранные главы физики твердого тела, Интегральные устройства радиоэлектроники, Материалы и компоненты электронных средств, Оптические свойства твердых тел, Теоретические основы технологии радиоэлектронных средств, Технология производства электронных средств, Физика полупроводниковых структур, Физико-химические основы технологии электронных средств, Физические основы микро- и наноэлектроники.

Последующими дисциплинами являются: Конструирование и технология микро- и наноэлектронных средств.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-7 способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;

В результате изучения дисциплины студент должен:

- знать мировой уровень, современные тенденции развития и основные физические явления, определяющие работоспособность и эффективность устройств полупроводниковой светотехники
- **уметь** проводить оценку основных параметров и учитывать современные тенденции развития устройств полупроводниковой светотехники при проектировании
- **владеть** методами расчёта, моделирования и исследований на современной контрольноизмерительной и вычислительной техник

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		7 семестр
Аудиторные занятия (всего)	92	92
Лекции	36	36
Лабораторные работы	56	56
Самостоятельная работа (всего)	52	52
Оформление отчетов по лабораторным работам	44	44

Проработка лекционного материала	8	8
Всего (без экзамена)	144	144
Подготовка и сдача экзамена	36	36
Общая трудоемкость ч	180	180
Зачетные Единицы	5.0	5.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

таолица 5.1 — Разделы дисциплины и виды з	uii/iiiiii		1		
Названия разделов дисциплины	Лекции	Лабораторные работы	Самостоятельная работа	Всего часов (без экзамена)	Формируемые компетенции
	7 семестр	o .			
1 Параметры и характеристики СИД	4	14	9	27	ОПК-7
2 Физика работы СИД	8	6	5	19	ОПК-7
3 Полупроводниковые материалы для изготовления СИД	4	4	5	13	ОПК-7
4 Методы получения полупроводниковых структур для СИД	4	4	5	13	ОПК-7
5 Излучающие чипы (кристаллы)	4	4	5	13	ОПК-7
6 Конструкции и технологии изготовления СИД	2	8	9	19	ОПК-7
7 Негативные эффекты в СИД	4	4	5	13	ОПК-7
8 Изделия полупроводниковой светотехники, классификация, особенности применения СИД	4	8	9	21	ОПК-7
9 Вопросы организации разработок и нормативно техническая документация	2	4	0	6	ОПК-7
Итого за семестр	36	56	52	144	
Итого	36	56	52	144	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (по лекциям)

		,		TE,	емые
Названия разделов	Содержа	ние разделов лекция	дисциплины по м	Трудоемкос ч	Формируем компетени

ВАХ – рабочий прямой ток и прямое падение напряжения, рассеиваемая мощность и мощность (поток) излучения. Спектральная характеристика, сила света, диаграмма направленности излучения, световыход. Методы измерения и обработки результатов (ВАХ, ВТАХ и др.) Итого 2 Физика работы СИД Р-п переход, его энергетические диаграммы в равновесном состоянии.Обедненный слой, электрические поля в обедненном слое. Резкий и плавный р-п переходы. Толщина обедненного слоя. Контактная разность потенциалов. Обратный ток р-п перехода, его составляющие. ВАХ р-п перехода. Инжекция носителей заряда. Гетеропереходы и их зонные диаграммы. Рекомбинация, ее механизмы. Скорость рекомбинации и время жизни носителей заряда. Излучательная рекомбинация. Световывод
Р-п переход, его энергетические диаграммы в равновесном и неравновесном состоянии. Обедненный слой, электрические поля в обедненном слое. Резкий и плавный р-п переходы. Толщина обедненного слоя. Контактная разность потенциалов. Обратный ток р-п перехода, его составляющие. ВАХ р-п перехода. Инжекция носителей заряда. Гетеропереходы и их зонные диаграммы. Рекомбинация, ее механизмы. Скорость рекомбинации и время жизни носителей заряда. Излучательная рекомбинация. Световывод
граммы в равновесном и неравновесном состоянии. Обедненный слой, электрические поля в обедненном слое. Резкий и плавный р-п переходы. Толщина обедненного слоя. Контактная разность потенциалов. Обратный ток р-п перехода, его составляющие. ВАХ р-п перехода. Инжекция носителей заряда. Гетеропереходы и их зонные диаграммы. Рекомбинация, ее механизмы. Скорость рекомбинации и время жизни носителей заряда. Излучательная рекомбинация. Световывод
ляющие. ВАХ p-n перехода. Инжекция носителей заряда. Гетеропереходы и их зонные диаграммы. Рекомбинация, ее механизмы. Скорость рекомбинации и время жизни носителей заряда. Излучательная рекомбинация. Световывод
из кристалла.
Итого 8
3 Полупроводниковые материалы для изготовления СИД Арсенид галлия (GaAs), твёрдые растворы АШВV, нитриды АШN, и др. Зонная структура. Особенности рекомбинации в непрямозонных полупроводниках. Двойные гетероструктуры и сверхрешётки.
Итого 4
4 Методы получения Диффузия примесей, жидкофазовая эпитаксия, эпитаксия, эпитаксия соединений, молекулярно пучковая эпитаксия. Особенности процессов, постростовая обработка.
Итого 4
Типы активной области (p-n-переход, гетеропереход, двойная гетероструктура). Планарный чип, «Flip-chip», вертикальныйчип). Топология омических контактов. Методы повышения световыхода (структуризация световыводящей поверхности, зеркала Брэгга)
Итого 4
6 Конструкции и технологии Типы корпусов СИД. Посадка кристал- 2 ОПК-7

изготовления СИД	ла на теплоотвод, разварка выводов, световыводящая линза.		
	Итого	2	
7 Негативные эффекты в СИД	Растекание тока, «стоп»-слои. Эффект «стягивания» тока, влияние топологии контактной металлизации. Влияние внешних факторов на характеристики СИД. Деградация характеристик и параметров.		ОПК-7
	Итого	4	
8 Изделия полупроводниковой светотехники, классификация,	Классификация, особенности применения СД.	4	ОПК-7
особенности применения СИД	Итого	4	
9 Вопросы организации разработок и нормативно техническая	Вопросы организации разработок и нормативно техническая документация	2	ОПК-7
документация	Итого	2	
Итого за семестр		36	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин								
	1	2	3	4	5	6	7	8	9
	Пре	едшеств	ующие	дисципл	ІИНЫ				
1 Избранные главы физики твердого тела		+							
2 Интегральные устройства радиоэлектроники			+	+				+	
3 Материалы и компоненты электронных средств	+		+						
4 Оптические свойства твердых тел	+	+	+		+	+	+		
5 Теоретические основы технологии радиоэлектронных средств				+		+			
6 Технология производства электронных средств			+	+		+			
7 Физика полупроводни-ковых структур	+	+	+	+	+	+	+	+	
8 Физико-химические основы технологии электронных средств	+	+		+	+		+		
9 Физические основы ми-	+	+	+	+	+	+	+	+	

кро- и наноэлектроники									
Последующие дисциплины									
1 Конструирование и техно-									
логия микро- и наноэлек-			+	+		+			
тронных средств									

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5.4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

		Виды занятий		
Компетенции	Лекции	Лабораторные работы	Самостоятельная работа	Формы контроля
ОПК-7	+	+	+	Экзамен, Отчет по лабораторной работе

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7. 1 – Наименование лабораторных работ

таолица 7. 1 - таименование лаоора	100112111 04001		
Названия разделов	Наименование лабораторных работ	Трудоемкость, ч	Формируемые компетенции
	7 семестр		
1 Параметры и характеристики СИД	Измерение и обработка параметров вольтамперной характеристики СИД.Изучение температурной зависимости ВАХ.Измерение светового потока, силы света и КСССИД.Исследование температурной зависимости силы света СИД	6	ОПК-7
	Измерение спектральной характеристики СИД, определение цветовой температуры, координат цветности. Измерение кандел-амперной и люменамперной зависимости. Определение КПД и световыхода	4	
	ВАХ.Мощность (поток) излучения.Сила света, диаграмма направленностииз-	4	

	C		
	лучения. Спектральная характеристи- ка. Методы измерения и обработки ре- зультатов (BAX, BTAX и др.)		
	Итого	14	
2 Физика работы СИД	P-п переход и его энергетические диаграммы. ВАХ р-п перехода. Инжекция носителей заряда. Излучательная рекомбинация. Световывод из кристалла.	6	ОПК-7
	Итого	6	
3 Полупроводниковые материалы для изготовления СИД	GaAs, AIIIBV, AIIIN и др.Зонная структура. Двойные гетероструктуры и сверхрешётки.	4	ОПК-7
	Итого	4	
4 Методы получения полупроводниковых структур для СИД	Диффузия примесей. Жидкофазовая эпитаксия. Эпитаксиальное наращивание изметаллоорганических соединений. Молекулярно пучковая эпитаксия. Особенности процессов, постростовая обработка	4	ОПК-7
	Итого	4	
5 Излучающие чипы (кристаллы)	Типы активной области.Планарный чип, «Flip-chip».Вертикальный чип.То-пология омическихконтактов.Методы повышения световыхода.	4	ОПК-7
	Итого	4	
6 Конструкции и технологии изготовления СИД	Измерение кандел-амперной характеристики СИД разных конструкций. Исследование аддитивности световых характеристик светодиодных устройств: кластеры, матрицы	4	ОПК-7
	Типы корпусов СД.Монтаж кристалла на теплоотвод.Сварка проволокой контактов кристалла и корпуса.Способы герметизации кристалла.Световыводящая линза	4	
	Итого	8	
7 Негативные эффекты в СИД	Растекание тока, «стоп»-слои. Эффект «стягивания» тока. Влияние топологии контактной металлизации. Влияние внешних факторов на характеристики СИД. Деградация характеристик и параметров.	4	ОПК-7
	Итого	4	
8 Изделия полупроводниковой светотехники, классификация,	Измерение световых характеристик СИД прожекторного типа.	4	ОПК-7
особенности применения СИД	Классификация, особенности применения СИД	4	

	Итого	8	
9 Вопросы организации разработок и нормативно техническая документация	Изучение нормативно-технической до- кументации при организации разрабо- ток	4	ОПК-7
	Итого	4	
Итого за семестр		56	

8. Практические занятия (семинары)

Не предусмотрено РУП

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 - Виды самостоятельной работы, трудоемкость и формируемые компетенции

таолица 9.1 - Виды само	стоятельной работы, трудоем	ікость и	формируем	лые компетенции
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	7 семест	p		
1 Параметры и характеристики СИД	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен
	Оформление отчетов по лабораторным работам	8		
	Итого	9	-	
2 Физика работы СИД	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен
	Оформление отчетов по лабораторным работам	4		
	Итого	5	-	
3 Полупроводниковые материалы для	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен
изготовления СИД	Оформление отчетов по лабораторным работам	4		
	Итого	5		
4 Методы получения полупроводниковых	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен
структур для СИД	Оформление отчетов по лабораторным работам	4		
	Итого	5		
5 Излучающие чипы (кристаллы)	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен
	Оформление отчетов по лабораторным работам	4		
	Итого	5		
6 Конструкции и	Проработка лекционного	1	ОПК-7	Отчет по лабораторной

технологии	материала			работе, Экзамен	
изготовления СИД	Оформление отчетов по лабораторным работам	8			
	Итого	9			
7 Негативные эффекты в СИД	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен	
	Оформление отчетов по лабораторным работам	4			
	Итого	5			
8 Изделия полупроводниковой	Проработка лекционного материала	1	ОПК-7	Отчет по лабораторной работе, Экзамен	
светотехники, классификация, особенности применения СИД	Оформление отчетов по лабораторным работам	8			
	Итого	9			
Итого за семестр		52			
	Подготовка и сдача экзамена	36		Экзамен	
Итого		88			

10. Курсовая работа (проект)

Не предусмотрено РУП

11. Рейтинговая система для оценки успеваемости студентов

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	7	семестр		
Отчет по лабораторной работе	30	20	20	70
Итого максимум за период	30	20	20	70
Экзамен				30
Нарастающим итогом	30	50	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (v.v.o.v.o.v.o.v.o.v.o.v.o.)
2 ()	65 - 69	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Светодиоды и светодиодные устройства: Учебное пособие / Солдаткин В. С., Вилисов А. А., Туев В. И. - 2016. 40 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/5954, дата обращения: 06.05.2017.

12.2. Дополнительная литература

1. Полупроводниковая светотехника: Учебное пособие для студентов, обучающихся по направлению подготовки 211000.62 – Конструирование и технология электронных средств / Туев В. И., Солдаткин В. С., Вилисов А. А. - 2015. 46 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/5458, дата обращения: 06.05.2017.

12.3 Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Технология изготовления светодиодных кристаллов: Учебно-методические указания для выполнения лабораторных работ / Солдаткин В. С., Ряполова Ю. В. 2017. 16 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6826, дата обращения: 06.05.2017.
- 2. Проектирование светодиодов и светотехнических устройств: Учебно-методические указания для выполнения лабораторных работ / Ряполова Ю. В., Солдаткин В. С. 2017. 16 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6765, дата обращения: 06.05.2017.
- 3. Полупроводниковые наногетероструктуры: Методические указания по самостоятельной работе / Солдаткин В. С., Каменкова В. С. 2017. 13 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6807, дата обращения: 06.05.2017.

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

в форме электронного документа;

в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

- 1. Научно-образовательный портал ТУСУР https://edu.tusur.ru/
- 2. Научная электронная библиотека http://elibrary.ru/

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных занятий используется лаборатория физических основ микро-и наноэлектроники, расположенная по адресу 634050, Томская область, г. Томск, пр-т Ленина, д. 40, 3 этаж, ауд. 316. Состав оборудования: Установка для измерения спектральных характеристик фото и электролюминесценции (1 шт.). Установка для комплексных измерений характеристик светодиодных гетероструктур (1 шт.). Вольтметры В7-20 (2 шт.), В7-21 (3 шт.), В7-23, В7-34. Измерители импеданса Е7-14, Л2-22, Л2-22/1, Л2-42, Л2-47, Л2-76, Х1-47. Источник питания Б5-43, Б5-44. Линейный источник питания НУ3003 (2 шт.). Микроскоп МБС-9 (2 шт.), МИМ-7 (2 шт.). Монохроматоры ДМР-4 (2 шт.), МУМ (2 шт.). Осциллограф С1-72 (2 шт.). ПЭВМ DURON 800 (3 шт.). Цифровой мультиметр АРРА 103. Цифровой осциллограф GDS -806S (4 шт.). Спектромом 204. Векторный анализатор цепей «Обзор-103»

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634050, г. Томск, пр. Ленина, 40, 2 этаж, ауд. 233. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Ce1eron D336 2.8ГГц. - 5 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационнообразовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей,

промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 – Дополнительные средства оценивания для студентов с инвалидностью

тионици 11 дополнительные средстви оденивания для студентов с инванидностью				
Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения		
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка		
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)		
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами		
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки		

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ					
Пр	орект	гор по учебной ра	або	те	
		П. Е. Т	po.	ян	
‹ ‹	>>>	2	0	Γ	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Полупроводниковая светотехника

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): **11.03.03 Конструирование и технология электронных средств**

Направленность (профиль): **Конструирование и технология наноэлектронных средств** Форма обучения: **очная**

Факультет: РКФ, Радиоконструкторский факультет

Кафедра: КУДР, Кафедра конструирования узлов и деталей радиоэлектронной аппаратуры

Курс: **4** Семестр: **7**

Учебный план набора 2014 года

Разработчики:

- Доцент каф. РЭТЭМ В. С. Солдаткин
- Старший преподаватель каф. КУДР С. А. Артищев

Экзамен: 7 семестр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

тистици т	мица 1 пере юнь закрепленных за днециплинов компетенции					
Код	Формулировка компетенции	Этапы формирования компетенций				
ОПК-7	способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	Должен знать мировой уровень, современные тенденции развития и основные физические явления, определяющие работоспособность и эффективность устройств полупроводниковой светотехники; Должен уметь проводить оценку основных параметров и учитывать современные тенденции развития устройств полупроводниковой светотехники при проектировании; Должен владеть методами расчёта, моделирования и исследований на современной контрольно-измерительной и вычислительной техник;				

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

			,
Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совер- шенствует действия ра- боты
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом на- блюдении

2 Реализация компетенций

2.1 Компетенция ОПК-7

ОПК-7: способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования

компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Таблица 3 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	навыками учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности
Виды занятий	 Лабораторные работы; Лекции; Самостоятельная работа; 	 Лабораторные работы; Лекции; Самостоятельная работа; 	 Лабораторные работы; Самостоятельная работа;
Используемые средства оценива- ния	• Отчет по лаборатор- ной работе; • Экзамен;	Отчет по лабораторной работе;Экзамен;	• Отчет по лабораторной работе; • Экзамен;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Состав	тели и критерии оценивани Знать	Уметь	Владеть
Отлично (высокий уровень)	• успешное и систематизированное знание современных тенденций развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;	• успешно и структурировано учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;	• всеми необходимыми навыками учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;
Хорошо (базовый уровень)	• успешное, но не систематизированное знание современных тенденций развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;	• успешно, но не структурировано учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;	• основными навыками учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;
Удовлетворительн о (пороговый уровень)	• базовое знание современных тенденций развития электроники, измерительной и вычислительной техники, информационных техно-	• учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных техно-	• навыками учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных тех-

логий в своей профессиональной деятельности;	логий в своей профессиональной деятельности под контролем квалифицированного спе-	нологий в своей профессиональной деятельности под контролем квалифицированного
	циалиста;	специалиста;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1 Экзаменационные вопросы

- Вопросы организации разработок и нормативно техническая документация.
- Классификация, особенности применения СИД.
- Растекание тока, «стоп»-слои. Эффект «стягивания» тока, влияние топологии контактной металлизации.
 - Влияние внешних факторов на характеристики СИД.
 - Деградация характеристик и параметров.
 - Типы корпусов СИД.
 - Посадка кристалла на теплоотвод, разварка выводов, световыводящая линза.
 - Типы активной области (р-п-переход, гетеропереход, двойная гетероструктура).
 - Планарный чип, «Flip-chip», вертикальный чип).
 - Топология омических контактов.
- Методы повышения световыхода (структуризация световыводящей поверхности, зеркала Брэгга).
- Диффузия примесей, жидкофазовая эпитаксия, эпитаксиальное наращивание из металлоорганических соединений, молекулярно пучковая эпитаксия.
 - Особенности процессов, постростовая обработка.
 - Арсенид галлия (GaAs), твёрдые растворы AIIIBV, нитриды AIIIN, и др.
 - Зонная структура.
 - Особенности рекомбинации в непрямозонных полупроводниках.
 - Двойные гетероструктуры и сверхрешётки.
- BAX рабочий прямой ток и прямое падение напряжения, рассеиваемая мощность и мощность (поток) излучения.
- Спектральная характеристика, сила света, диаграмма направленности излучения, световыход.
 - Методы измерения и обработки результатов (ВАХ, ВТАХ и др.).
 - Р-п переход, его энергетические диаграммы в равновесном и неравновесном состоянии.
 - Обедненный слой, электрические поля в обедненном слое.
 - Резкий и плавный р-п переходы.
- Толщина обедненного слоя. Контактная разность потенциалов. Обратный ток p-n перехода, его составляющие.
 - ВАХ р-п перехода.
 - Инжекция носителей заряда.
 - Гетеропереходы и их зонные диаграммы.
 - Рекомбинация, ее механизмы.
 - Скорость рекомбинации и время жизни носителей заряда.
 - Излучательная рекомбинация.
 - Световывод из кристалла.

3.2 Темы лабораторных работ

- Измерение и обработка параметров вольтамперной характеристики СИД.Изучение тем-

пературной зависимости ВАХ. Измерение светового потока, силы света и КСС

- СИД.Исследование температурной зависимости силы света СИД
- Измерение спектральной характеристики СИД, определение цветовой температуры, координат цветности. Измерение кандел-амперной и люмен-амперной зависимости. Определение КПД и световыхода
 - Измерение кандел-амперной характеристики СИД разных конструкций. Исследование
 - аддитивности световых характеристик светодиодных устройств: кластеры, матрицы
 - Измерение световых характеристик СИД прожекторного типа.
 - Р-п переход и его энергетические диаграммы.ВАХ р-п перехода.Инжекция носителей
 - заряда. Излучательная рекомбинация. Световывод из кристалла.
 - ВАХ.Мощность (поток) излучения. Сила света, диаграмма направленности
- излучения. Спектральная характеристика. Методы измерения и обработки результатов (BAX, BTAX и др.)
 - GaAs, AIIIBV, AIIIN и др. Зонная структура. Двойные гетероструктуры и сверхрешётки.
 - Диффузия примесей. Жидкофазовая эпитаксия. Эпитаксиальное наращивание из
- металлоорганических соединений. Молекулярно пучковая эпитаксия. Особенности процессов, постростовая обработка
- Типы активной области.Планарный чип, «Flip-chip».Вертикальный чип.Топология омических
 - контактов. Методы повышения световыхода.
- Типы корпусов СД.Монтаж кристалла на теплоотвод. Сварка проволокой контактов кристалла и корпуса. Способы герметизации кристалла. Световыводящая линза
- Растекание тока, «стоп»-слои. Эффект «стягивания» тока. Влияние топологии контактной металлизации. Влияние внешних факторов на характеристики СИД. Деградация характеристик и параметров.
 - Классификация, особенности применения СИД
 - Изучение нормативно-технической документации при организации разработок

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

– методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы фор-мирования компетенций, согласно п. 12 рабочей программы.

4.1. Основная литература

1. Светодиоды и светодиодные устройства: Учебное пособие / Солдаткин В. С., Вилисов А. А., Туев В. И. - 2016. 40 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/5954, свободный.

4.2. Дополнительная литература

1. Полупроводниковая светотехника: Учебное пособие для студентов, обучающихся по направлению подготовки 211000.62 – Конструирование и технология электронных средств / Туев В. И., Солдаткин В. С., Вилисов А. А. - 2015. 46 с. [Электронный ресурс] - Режим доступа: https://edu.tusur.ru/publications/5458, свободный.

4.3. Обязательные учебно-методические пособия

- 1. Технология изготовления светодиодных кристаллов: Учебно-методические указания для выполнения лабораторных работ / Солдаткин В. С., Ряполова Ю. В. 2017. 16 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6826, свободный.
- 2. Проектирование светодиодов и светотехнических устройств: Учебно-методические указания для выполнения лабораторных работ / Ряполова Ю. В., Солдаткин В. С. 2017. 16 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/6765, свободный.
- 3. Полупроводниковые наногетероструктуры: Методические указания по самостоятельной работе / Солдаткин В. С., Каменкова В. С. 2017. 13 с. [Электронный ресурс] Режим доступа:

https://edu.tusur.ru/publications/6807, свободный.

4.4. Базы данных, информационно справочные и поисковые системы

- 1. Научно-образовательный портал ТУСУР https://edu.tusur.ru/
- 2. Научная электронная библиотека http://elibrary.ru/