МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ							
Пр	орен	стор по учебной ра	бот	e			
		П. Е. Т ₁	пос	H			
‹ ‹	>>	20)]	Г			

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Проектирование устройств фотоники и оптоинформатики

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): 12.03.03 Фотоника и оптоинформатика

Направленность (профиль): Фотоника нелинейных, волноводных и периодических структур

Форма обучения: очная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **4** Семестр: **7**

Учебный план набора 2015 года

Распределение рабочего времени

No	Виды учебной деятельности	7 семестр	Всего	Единицы
1	Практические занятия	108	108	часов
2	Всего аудиторных занятий	108	108	часов
3	Самостоятельная работа	108	108	часов
4	Всего (без экзамена)	216	216	часов
5	Общая трудоемкость	216	216	часов
		6.0	6.0	3.E

Дифференцированный зачет: 7 семестр

Томск 2017

Рассмотрена	и одо	брена на	а за	седании	кафедры
протокол №	58	от «_8	<u></u> »	2	20 <u>17</u> г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требовательного стандарта высшего образования (ФГОС 1 сти) 12.03.03 Фотоника и оптоинформатика, утверждена на заседании кафедры «»	денного 03 сентября 2015 года, рассмотрена и
Разработчики:	
ведущий электроник каф. ЭП	М. В. Бородин
заведующий кафедрой каф. ЭП	С. М. Шандаров
Заведующий обеспечивающей каф	С. М. Шандаров
Рабочая программа согласована с факультетом направления подготовки (специальности).	и, профилирующей и выпускающей кафедрами
Декан ФЭТ	А. И. Воронин
Заведующий выпускающей каф. ————————————————————————————————————	С. М. Шандаров
Эксперт:	
профессор кафедра ЭП ТУСУР	Л. Н. Орликов

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Изучение методологии проектирования

Получение навыков разработки устройств фотоники и оптоинформатики

Получение навыков применения персонального компьютера для составления проектной до-кументации

1.2. Задачи дисциплины

- Получение представлений об алгоритмах, положенных в основу программного обеспечения, используемого для решения проектных задач
- Получение навыков решения задач, связанных с анализом объектов фотоники и оптоинформатики
 - Получение навыков монтажа, настройки, отладки и испытаний опытных образцов

2. Место дисциплины в структуре ОПОП

Дисциплина «Проектирование устройств фотоники и оптоинформатики» (Б1.В.ДВ.5.1) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются следующие дисциплины: Акустооптические методы обработки информации, Интегральная оптика, Математика, Оптические методы обработки информации, Прикладная информатика, Распространение лазерных пучков.

Последующими дисциплинами являются: Когерентная оптика и голография, Нелинейная оптика.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-6 способностью к оценке технологичности и технологическому контролю простых и средней сложности конструкторских решений, разработке типовых процессов контроля параметров механических, оптических и оптико-электронных деталей и узлов;
- ПК-7 готовностью к участию в монтаже, наладке, настройке, юстировке, испытаниях, сдаче в эксплуатацию опытных образцов, сервисном обслуживании и ремонте техники;

В результате изучения дисциплины студент должен:

- **знать** особенности процесса интеграции аппаратных и программных средств устройств фотоники и оптоинформатики; метрологические особенности монтажа, настройки, отладки испытаний опытных образцов; причины возникновения погрешностей измерения и методы их уменьшения; принципы оценки технологичности конструкторских решений; методы контроля параметров деталей и узлов
- уметь проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания; оценивать погрешности измерения контрольных параметров; решать задачи, связанные с анализом технических объектов; оценивать технологичность конструкторских решений; разрабатывать процессы контроля параметров
- **владеть** навыками монтажа, настройки, отладки приборов и устройств фотоники и оптоинформатики и их испытаний; навыками измерений и контроля погрешностей; навыками работы с компьютером, как средством решения задач, связанных с анализом технических объектов; способами технологического контроля конструкторских решений; методами контроля параметров деталей и узлов

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		7 семестр
Аудиторные занятия (всего)	108	108

Практические занятия	108	108
Самостоятельная работа (всего)	108	108
Выполнение индивидуальных заданий	56	56
Самостоятельное изучение тем (вопросов) теоретической части курса	16	16
Написание рефератов	10	10
Подготовка к практическим занятиям, семинарам	26	26
Всего (без экзамена)	216	216
Общая трудоемкость ч	216	216
Зачетные Единицы	6.0	6.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

таолица 5.1 – Разделы дисциплины и виды заняти	11/1			
Названия разделов дисциплины	Практические занятия	Самостоятельная работа	Всего часов (без экзамена)	Формируемые компетенции
7 cen	иестр			
1 Знакомство с устройством или объектом управления. Изучение литературных и патентных источников по интересующей проблеме.	12	16	28	ПК-6, ПК-7
2 Определение цели проектирования и постановка задачи.	8	12	20	ПК-6
3 Разработка структурных и функциональных схем разрабатываемого устройства.	12	28	40	ПК-6, ПК-7
4 Изготовление макета устройства.	28	18	46	ПК-6
5 Разработка схемы эксперимента и проведение испытаний.	24	16	40	ПК-6, ПК-7
6 Разработка документации и составление отчета	24	18	42	ПК-6, ПК-7
Итого за семестр	108	108	216	
Итого	108	108	216	

5.2. Содержание разделов дисциплины (по лекциям)

Не предусмотрено РУП

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 - Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин							
	1	2	3	4	5	6		
Пред	шествуюц	цие дисциі	плины					
1 Акустооптические методы обработки информации		+	+	+	+	+		
2 Интегральная оптика		+	+	+	+	+		
3 Математика		+	+	+	+	+		
4 Оптические методы обработки информации		+		+	+	+		
5 Прикладная информатика		+	+	+	+	+		
6 Распространение лазерных пучков		+	+	+	+	+		
Последующие дисциплины								
1 Когерентная оптика и голография	+	+	+	+	+	+		
2 Нелинейная оптика		+	+	+	+	+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4

Таблица 5.4 – Соответствие компетенций и видов занятий, формируемых при изучении дисциплины

ны			
	Виды з	анятий	
Компетенции	Практические занятия	Самостоятельная работа	Формы контроля
ПК-6	+	+	Отчет по индивидуальному заданию, Дифференцированный зачет
ПК-7	+	+	Отчет по индивидуальному заданию, Дифференцированный зачет

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП

7. Лабораторные работы

Не предусмотрено РУП

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8. 1 – Наименование практических занятий (семинаров)

таолица в. т – таименование практи	ческих запитии (семинаров)			
Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции	
	7 семестр			
1 Знакомство с устройством или объектом управления. Изучение литературных и патентных	Знакомство с устройством или объектом управления. Изучение принципов функционирования.	12	ПК-6	
источников по интересующей проблеме.	Итого	12		
2 Определение цели проектирования и постановка	Определение цели проектирования и постановка задачи	8	ПК-6	
задачи.	Итого	8		
3 Разработка структурных и функциональных схем разрабатываемого устройства.	Разработка структурных и функциональных схем разрабатываемого устройства. Построение алгоритма управления.	12	ПК-6, ПК- 7	
	Итого	12		
4 Изготовление макета устройства.	Изготовление макета устройства на базе выбранной платформы. Создание программной части. Отладка.	28	ПК-6	
	Итого	28		
5 Разработка схемы эксперимента и проведение испытаний.	Разработка схемы эксперимента и проведение испытаний.	24	ПК-6, ПК- 7	
	Итого	24		
6 Разработка документации и составление отчета	Разработка проектной документации. Составление отчета.	24	ПК-6, ПК- 7	
	Итого	24		
Итого за семестр		108		

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 - Виды самостоятельной работы, трудоемкость и формируемые компетенции

гаолица 9.1 - Биды самостоятельной раооты, трудоемкость и формируемые компетенции						
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля		
	7 семест	p				
1 Знакомство с	Написание рефератов	10	ПК-6,	Дифференцированный		
устройством или объектом управления. Изучение литературных	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ПК-7	зачет, Отчет по индивидуальному заданию		

и патентных источников по интересующей проблеме.	Итого	16		
2 Определение цели проектирования и постановка задачи.	Подготовка к практиче- ским занятиям, семина- рам	8	ПК-6	Дифференцированный зачет, Отчет по индивидуальному заданию
	Выполнение индивидуальных заданий	4		
	Итого	12		
3 Разработка структурных и функциональных схем	Подготовка к практиче- ским занятиям, семина- рам	6	ПК-6, ПК-7	Дифференцированный зачет, Отчет по индивидуальному заданию
разрабатываемого устройства.	Самостоятельное изучение тем (вопросов) теоретической части курса	10		
	Выполнение индивидуальных заданий	12		
	Итого	28		
4 Изготовление макета устройства.	Подготовка к практиче- ским занятиям, семина- рам	6	ПК-6	Дифференцированный зачет, Отчет по индивидуальному заданию
	Выполнение индивидуальных заданий	12		
	Итого	18		
5 Разработка схемы эксперимента и проведение испытаний.	Подготовка к практиче- ским занятиям, семина- рам	6	ПК-6, ПК-7	Дифференцированный зачет, Отчет по индивидуальному заданию
	Выполнение индивидуальных заданий	10		
	Итого	16		
6 Разработка документации и	Выполнение индивидуальных заданий	18	ПК-6, ПК-7	Дифференцированный зачет, Отчет по индиви-
составление отчета	Итого	18		дуальному заданию
Итого за семестр		108		
Итого		108		

9.1. Вопросы для подготовки к практическим занятиям, семинарам

1. Определение цели проектирования и постановка задачи

9.2. Темы рефератов

1. Изучение литературных источников по интересующей теме.

9.3. Темы для самостоятельного изучения теоретической части курса

- 1. Разработка структурных и функциональных схем разрабатываемого устройства. Выбор макетной платформы для построения системы управления, в том числе изучение соответствующей технической документации.
- 2. Знакомство с устройством или объектом управления. Определение принципов функционирования.

9.4. Темы индивидуальных заданий

- 1. Разработка структурных и функциональных схем устройства.
- 2. Изготовление макета устройства на базе выбранной платформы. Создание программной части. Отладка.
- 3. Разработка проектной документации. Составление отчета по индивидуальному заданию.
 - 4. Разработка схемы эксперимента. Проведение испытаний устройства.
 - 5. Определение цели проектирования и постановка задачи

10. Курсовая работа (проект)

Не предусмотрено РУП

11. Рейтинговая система для оценки успеваемости студентов

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
	7	семестр		
Дифференцированный зачет			30	30
Отчет по индивидуальному заданию	10	50	10	70
Итого максимум за период	10	50	40	100
Нарастающим итогом	10	60	100	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11. 2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11. 3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 - 69	

	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Компьютерное моделирование и проектирование: Учебное пособие / Саликаев Ю. Р. 2012. 94 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2548, дата обращения: 28.04.2017.
- 2. Основы автоматизированного проектирования : учебник для вузов / Е.М. Кудрявцев. М. : Академия, 2011. 304 с. ISBN 978-5-7695-6004-0 (наличие в библиотеке ТУСУР 10 экз.)
- 3. Введение в квантовую и оптическую электронику: Учебное пособие / Башкиров А. И., Шандаров С. М. 2012. 98 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1578, дата обращения: 28.04.2017.
- 4. Технология приборов оптической электроники и фотоники: Учебное пособие / Орликов Л. Н. 2012. 87 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1543, дата обращения: 28.04.2017.

12.2. Дополнительная литература

- 1. Основы численных методов: Учебник для вузов / В.М. Вержбицкий. М.: Высшая школа, 2002. 848 с. ISBN 5-06-004020-8 (наличие в библиотеке ТУСУР 16 экз.)
- 2. Mathcad 12 для студентов и инженеров / В.Ф. Очков. СПб.: БХВ-Петербург, 2005. 457 с. ISBN 5-94157-289-1 (наличие в библиотеке ТУСУР 31 экз.)

12.3 Учебно-метолические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Квантовая и оптическая электроника: Методические указания к практическим занятиям для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 7 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/3987, дата обращения: 28.04.2017.
- 2. Квантовая и оптическая электроника: Методические указания по самостоятельной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 20 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/3988, дата обращения: 28.04.2017.

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

- 1. 1. Образовательный портал ТУСУР
- 2. 2. Библиотека ТУСУР для самостоятельной работы
- 3. 3. Программное обеспечение: среды программирования по выбору студентов, Scilab или Mathcad версии не ниже 2001 для расчетов, офисные пакеты для оформления отчета, системы

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для практических занятий

Учебная аудитория с количеством посадочных мест не менее 25, стандартная учебная мебель, доска

13.1.2. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 47, 5 этаж, ауд.511.Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Pentium 1.5ГГц. - 15 шт.; компьютеры подключены к сети Интернет и обеспечивают доступ в электронную информационно-образовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 – Дополнительные средства оценивания для студентов с инвалидностью

	от постительные средства оцентвания	<u> </u>
Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к	Преимущественно дистанционными методами

аппарата	зачету	
_ *	Тесты, письменные самостоятельные	
общемедицинским	работы, вопросы к зачету,	методами, исходя из состояния
показаниям	контрольные работы, устные ответы	обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		УТВЕРЖДАЮ	
Пр	ope	ктор по учебной рабо	эте
		П. Е. Тро	нк
~	>>	20_	_ Г

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Проектирование устройств фотоники и оптоинформатики

Уровень образования: высшее образование - бакалавриат

Направление подготовки (специальность): 12.03.03 Фотоника и оптоинформатика

Направленность (профиль): Фотоника нелинейных, волноводных и периодических структур

Форма обучения: очная

Факультет: ФЭТ, Факультет электронной техники

Кафедра: ЭП, Кафедра электронных приборов

Курс: **4** Семестр: **7**

Учебный план набора 2015 года

Разработчики:

- ведущий электроник каф. ЭП М. В. Бородин
- заведующий кафедрой каф. ЭП С. М. Шандаров

Дифференцированный зачет: 7 семестр

Томск 2017

1. Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Таолица т	 Перечень закрепленных за дисциплиной компетенций 			
Код	Формулировка компетенции	Этапы формирования компетенций		
ПК-7	готовностью к участию в монтаже, наладке, настройке, юстировке, испытаниях, сдаче в эксплуатацию опытных образцов, сервисном обслуживании и ремонте техники	Должен знать особенности процесса интеграции аппаратных и программных средств устройств фотоники и оптоинформатики; метрологические особенности монтажа, настройки, отладки испы-		
ПК-6	способностью к оценке технологичности и технологическому контролю простых и средней сложности конструкторских решений, разработке типовых процессов контроля параметров механических, оптических и оптико-электронных деталей и узлов	сти монтажа, настройки, отладки испытаний опытных образцов; причины возникновения погрешностей измерения и методы их уменьшения; принципы оценки технологичности конструкторских решений; методы контроля параметров деталей и узлов; Должен уметь проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания; оценивать погрешности измерения контрольных параметров; решать задачи, связанные с анализом технических объектов; оценивать технологичность конструкторских решений; разрабатывать процессы контроля параметров; Должен владеть навыками монтажа, настройки, отладки приборов и устройств фотоники и оптоинформатики и их испытаний; навыками измерений и контроля погрешностей; навыками работы с компьютером, как средством решения задач, связанных с анализом технических объектов; способами технологического контроля конструкторских решений; методами контроля параметров		
		деталей и узлов;		

Общие характеристики показателей и критериев оценивания компетенций на всех этапах приведены в таблице 2.

Таблица 2 – Общие характеристики показателей и критериев оценивания компетенций по этапам

таолица 2 Оощис	характеристики показател	си и критерись оценивания	ROMITETETIQUE TO TTATIAM
Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	1 1	Контролирует работу, проводит оценку, совер- шенствует действия ра- боты
	см границ применимости	страгирования проолем	

Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в ис- следовании, приспосаб- ливает свое поведение к обстоятельствам в реше- нии проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом на- блюдении

2 Реализация компетенций

2.1 Компетенция ПК-7

ПК-7: готовностью к участию в монтаже, наладке, настройке, юстировке, испытаниях, сдаче в эксплуатацию опытных образцов, сервисном обслуживании и ремонте техники.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 3.

Таблица 3 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	особенности процесса интеграции аппаратных и программных средств устройств фотоники и оптоинформатики; последовательность выполнения монтажа, настройки, отладки испытаний опытных образцов; причины возникновения погрешностей измерения и методы их уменьшения	проводить монтаж, на- стройку, отладку прибо- ров и устройств фотони- ки и оптоинформатики, проводить испытания; оценивать погрешности измерения контрольных параметров	навыками монтажа, на- стройки, отладки прибо- ров и устройств фотони- ки и оптоинформатики и их испытаний; навыками измерений и контроля погрешностей
Виды занятий	Практические занятия;Самостоятельная работа;	Практические занятия;Самостоятельная работа;	• Самостоятельная работа;
Используемые средства оценивания	• Отчет по индивидуальному заданию; • Дифференцированный зачет;	• Отчет по индивидуальному заданию; • Дифференцированный зачет;	Отчет по индивидуальному заданию;Дифференцированный зачет;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично (высокий уровень)	• Студент способен охарактеризовать причины возникающих погрешностей измерения, знает методы их оценки и готов предложить способы их уменьше-	• Студент способен самостоятельно проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания с	• Студент обладает навыками самостоятельно проводить качественный монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, про-

	ния; • Студент способен корректно пояснить особенности реализации алгоритма на предлагаемой аппаратной платформе, его ограничения; • Студент способен полностью и корректно рассказать последовательность выполнения монтажа, настройки, отладки и проведения испытаний опытных образцов;	соблюдением требований по сдаче в эксплуатацию опытных образцов; • Студент способен самостоятельно корректно оценивать погрешности измерения контрольных параметров;	водить испытания с соблюдением требований по сдаче в эксплуатацию опытных образцов; • Студент обладает навыками самостоятельной оценки измерительных погрешностей, выбора средств и методов, необходимых для обеспечения метрологических требований;
Хорошо (базовый уровень)	• Студент способен с незначительными ошибками пояснить особенности реализации алгоритма на предлагаемой аппаратной платформе, его ограничения; • Студент способен охарактеризовать причины возникающих погрешностей измерения и знает методы их оценки; • Студент способен с незначительными ошибками рассказать последовательность выполнения монтажа, настройки, отладки и проведения испытаний опытных образцов;	• Студент способен под контролем руководителя проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания с соблюдением требований по сдаче в эксплуатацию опытных образцов; • Студент способен самостоятельно корректно оценивать погрешности измерения контрольных параметров;	• Студент обладает навыками под контролем руководителя проводить качественный монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания с соблюдением требований по сдаче в эксплуатацию опытных образцов; • Студент обладает навыками самостоятельной оценки измерительных погрешностей, выбора средств, необходимых для обеспечения метрологических требований;
Удовлетворительн о (пороговый уровень)	 Студент способен с незначительными ошибками пояснить особенности реализации алгоритма на предлагаемой аппаратной платформе; Студент знает методы оценки измерительных погрешностей; Студент способен найти необходимую информацию о последовательности выполнения 	• Студент способен в группе под контролем руководителя проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания с соблюдением требований по сдаче в эксплуатацию опытных образцов; • Студент способен с незначительными ошибками оценивать	• Студент обладает навыками в группе под контролем руководителя проводить монтаж, настройку, отладку приборов и устройств фотоники и оптоинформатики, проводить испытания опытных образцов; • Студент обладает навыками самостоятельной оценки измерительных погрешностей;

монтажа, настройки, от-	погрешности измерения	
ладки и проведения ис-	контрольных парамет-	
пытаний опытных об-	ров;	
разцов;		

2.2 Компетенция ПК-6

ПК-6: способностью к оценке технологичности и технологическому контролю простых и средней сложности конструкторских решений, разработке типовых процессов контроля параметров механических, оптических и оптико-электронных деталей и узлов.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	принципы оценки технологичности конструкторских решений; методы контроля параметров деталей и узлов	решать задачи, связанные с анализом технических объектов; оценивать технологичность конструкторских решений; разрабатывать процессы контроля параметров	навыками работы с компьютером, как сред- ством решения задач, связанных с анализом технических объектов; способами технологиче- ского контроля конструк- торских решений; мето- дами контроля парамет- ров деталей и узлов
Виды занятий	Практические занятия;Самостоятельная работа;	Практические занятия;Самостоятельная работа;	• Самостоятельная работа;
Используемые средства оценивания	Отчет по индивидуальному заданию;Дифференцированный зачет;	Отчет по индивиду- альному заданию;Дифференцирован- ный зачет;	Отчет по индивидуальному заданию;Дифференцированный зачет;

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 6.

Таблица 6 – Показатели и критерии оценивания компетенции на этапах

Состав	Знать	Уметь	Владеть
Отлично	• Студент знает прин-	• Студент способен	• Студент способен
(высокий уровень)	ципы и различные ме-	самостоятельно анали-	самостоятельно строить
	тодики оценки техноло-	зировать технические	эффективные алгорит-
	гичности и критерии	объекты, строить моде-	мы решения задач по
	выбора оптимальных	ли их описывающие,	моделированию техни-
	процессов с позиции	выбирать эффективные	ческих объектов, выби-
	технологичности;	средства и методы вы-	рать наиболее эффек-
	• Студент знает совре-	числений, корректно их	тивные численные ме-
	менные методы контро-	реализовывать на ЭВМ	тоды, корректно их реа-
	ля параметров деталей	или эффективно пользо-	лизовывать на ЭВМ,
	и узлов и отслеживает	ваться уже существую-	эффективно пользовать-
	их развитие по специ-	щими.;	ся уже существующими
	альной литературе;	• Студент способен	аппаратными и про-
		самостоятельно изучать	граммными средства-
		проектную и техниче-	ми.;
		скую документацию,	• Студент способен

		оценивать соблюдение технологических норм и требований, выбирать наиболее рациональные способы изготовления изделий; • Студент способен организовать процесс контроля параметров изделия, адаптируя существующие методики с целью повышения эффективности;	самостоятельно изучать проектную и техническую документацию, оценивать соблюдение технологических норм и требований, выбирать наиболее рациональные способы изготовления изделий; • Студент владеет современными методами контроля параметров деталей и узлов и отслеживает их развитие по специальной литературе;
Хорошо (базовый уровень)	• Студент знает принципы оценки технологичности и критерии выбора оптимальных процессов с позиции технологичности; • Студент знает типовые методы контроля параметров деталей и узлов;	• Студент способен самостоятельно или в команде анализировать технические объекты, строить модели их описывающие, выбирать приемлемые средства и методы вычислений, корректно реализовывать их на ЭВМ или эффективно пользоваться уже существующими.; • Студент способен самостоятельно изучать проектную и техническую документацию, оценивать соблюдение технологических норм и требований; • Студент способен организовать процесс контроля параметров изделия, используя известные методики;	• Студент способен самостоятельно или в группе строить приемлемые алгоритмы решения задач по моделированию технических объектов, выбирать приемлемые численные методы, корректно их реализовывать на ЭВМ, эффективно пользоваться уже существующими аппаратными и программными средствами.; • Студент способен самостоятельно изучать проектную и техническую документацию, оценивать соблюдение технологических норм и требований; • Студент владеет типовыми методами контроля параметров деталей и узлов;
Удовлетворительн о (пороговый уровень)	• Студент знает необ- ходимые методы контроля параметров деталей и узлов; • Студент знает прин- ципы оценки техноло- гичности;	• Студент способен хотя бы в группе изучать проектную и техническую документацию, оценивать соблюдение технологических норм и требований; • Студент способен с помощью руководителя организовать процесс контроля параметров	• Студент способен хотя бы в группе изучать проектную и техническую документацию, оценивать соблюдение технологических норм и требований; • Студент способен хотя бы в команде строить приемлемые алгоритмы решения за-

ת כיגו	РΠ	гия
VI.3/1		IVIA

• Студент способен хотя бы в команде анализировать технические объекты, строить модели их описывающие, выбирать приемлемые средства и методы вычислений, с незначительными недочетами их реализовывать на ЭВМ или пользоваться уже существующими.;

дач по моделированию технических объектов, выбирать приемлемые численные методы, с незначительными недочетами их реализовывать на ЭВМ, пользоваться уже существующими аппаратными и программными средствами.;

• Студент владеет необходимыми методами контроля параметров деталей и узлов;

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в следующем составе.

3.1 Темы индивидуальных заданий

- Автоматизация технологического процесса на основе существующего оборудования с использованием микроконтроллерных средств
- Автоматизация экспериментальной установки в выбранной начной области на основе существующего оборудования с использованием микроконтроллерных средств
 - Инициативная разработка в выбранной области науки или техники

3.2 Вопросы дифференцированного зачета

- Устройство или объект управления. Принципы функционирования.
- Цели проектирования и постановка задачи
- Обзор литературных источников по интересующей теме.
- Структурная и функциональная схемы разрабатываемого устройства. Макетная платформа для построения системы управления, обоснование выбора.
 - Алгоритм функционирования и программная часть макета.
 - Схемы эксперимента. Результаты испытаний устройства.
 - Проектная документации. Отчет по индивидуальному заданию.

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

— методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы фор-мирования компетенций, согласно п. 12 рабочей программы.

4.1. Основная литература

- 1. Компьютерное моделирование и проектирование: Учебное пособие / Саликаев Ю. Р. 2012. 94 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2548, свободный.
- 2. Основы автоматизированного проектирования : учебник для вузов / Е.М. Кудрявцев. М. : Академия, 2011. 304 с. ISBN 978-5-7695-6004-0 (наличие в библиотеке ТУСУР 10 экз.)
- 3. Введение в квантовую и оптическую электронику: Учебное пособие / Башкиров А. И., Шандаров С. М. 2012. 98 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1578, свободный.
- 4. Технология приборов оптической электроники и фотоники: Учебное пособие / Орликов Л. Н. 2012. 87 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1543, сво-

4.2. Дополнительная литература

- 1. Основы численных методов: Учебник для вузов / В.М. Вержбицкий. М.: Высшая школа, 2002. 848 с. ISBN 5-06-004020-8 (наличие в библиотеке ТУСУР 16 экз.)
- 2. Mathcad 12 для студентов и инженеров / В.Ф. Очков. СПб.: БХВ-Петербург, 2005. 457 с. ISBN 5-94157-289-1 (наличие в библиотеке ТУСУР 31 экз.)

4.3. Обязательные учебно-методические пособия

- 1. Квантовая и оптическая электроника: Методические указания к практическим занятиям для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 7 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/3987, свободный.
- 2. Квантовая и оптическая электроника: Методические указания по самостоятельной работе для студентов направлений 210100.62 Электроника и наноэлектроника, 222900.62 Нанотехнологии и микросистемная техника / Башкиров А. И. 2014. 20 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/3988, свободный.

4.4. Базы данных, информационно справочные и поисковые системы

- 1. 1. Образовательный портал ТУСУР
- 2. 2. Библиотека ТУСУР для самостоятельной работы
- 3. Программное обеспечение: среды программирования по выбору студентов, Scilab или Mathcad версии не ниже 2001 для расчетов, офисные пакеты для оформления отчета, системы графического проектирования для создания проектной документации.