МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

		УТВЕРЖДАЮ							
Пр	Проректор по учебной работе								
	П.Е. Троян								
«	« » 2017 г.								

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ВЫСШАЯ МАТЕМАТИКА

Уровень основной образовательной программы специалитет

Направление(я) подготовки (специальность) 25.05.03 «Техническая эксплуатация транспортного радиооборудования»

Профиль(и) Техническая эксплуатация радиооборудования воздушных судов и аэропортов

Форма обучения очная

Факультет: радиоконструкторский (РКФ)

Кафедра: Конструирования и производства радиоаппаратуры (КИПР)

Курс 1,2 Семестр 1,2,3

Учебный план набора 2011 года.

Распределение рабочего времени:

№	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Всего	Единицы
	Лекции	36	34	36	106	часов
	Лабораторные работы					часов
	Практические занятия	54	52	54	160	часов
	Курсовой проект/работа (КРС) (аудиторная)					часов
	Всего аудиторных занятий (Сумма 1-4)	90	86	90	266	часов
	Из них в интерактивной форме	17	17	18	52	часов
	Самостоятельная работа студентов (СРС)	54	58	90	202	часов
	Всего (без экзамена) (Сумма 5,7)	144	144	180	468	часов
	Самост. работа на подготовку, сдачу экзамена	36	36	36	108	часов
	Общая трудоемкость (Сумма 8,9)	180	180	216	576	часов
	(в зачетных единицах)	5	5	6	16	3ET

Зачет не предусмотрено

Диф. зачет не предусмотрено

Экзамен 1,2,3 семестр

Томск 2017

Рассмотрена и одобрена на заседании кафедры протокол № 289 от «23 » 1 2017 г.

Лист согласований

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования по специальности 25.05.03 "Техническая эксплуатация транспортного радиооборудования", утверждённого 12 сентября 2016 г., рассмотрена и утверждена на заседании кафедры «23» января 2017 г., протокол № 289

Разработчик: доцент кафедры математики	В.А. Томиленко
Зав. обеспечивающей кафедрой математики	А.Л. Магазинникова
Рабочая программа согласована с факультетом, прокафедрами направления подготовки (специальности).	офилирующими и выпускающими
Декан РКФ	Д.В. Озеркин
Зав. профилирующей кафедрой КИПР	В.М. Карабан
Зав. выпускающей кафедрой КИПР	В.М. Карабан
Эксперты: Профессор кафедры Математика ТУСУР	А.А. Ельцов
Доцент кафедры КИПР ТУСУР	А.А.Чернышов

- 1. Цели и задачи дисциплины: целью курса «Математика» является изучение основных математических понятий, их взаимосвязи и развития, а также отвечающих им методов расчёта, используемых для анализа, моделирования и решения прикладных инженерных задач. В задачи курса математики входят: развитие алгоритмического и логического мышления студентов, овладение методами исследования и решения математических задач, выработка у студентов умения самостоятельно расширять свои математические знания и проводить математический анализ прикладных инженерных задач.
- **2.** Место дисциплины в структуре ООП: «Математика» относится к базовой части дисциплин. Для изучения курса математики необходимо твердое знание студентами базового курса математики средней школы. Математика является фундаментом образования инженера. Она призвана дать студентам математический аппарат, который будет использоваться в дальнейшем при изучении дисциплин базового цикла «Физика», «Системные основы радиоэлектроники», а также при изучении дисциплин профессионального цикла, в учебно-исследовательской и научно-исследовательской работе.
- **3. Требования к результатам освоения дисциплины:** процесс изучения дисциплины направлен на формирование следующих компетенций:
 - *OK-1*: «Выпускник обладает способностью к абстрактному мышлению, анализу, синтезу».

В результате изучения дисциплины студент должен:

Знать: основные понятия и методы решения задач алгебры, геометрии, математического анализа, включая ряды и интеграл Фурье, обыкновенных дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей и математической статистики использующихся при изучений общетеоретических и специальных дисциплин и в инженерной практике.

Уметь: применять математические методы для решения практических задач и пользоваться при необходимости математической литературой.

Владеть: методами решения задач алгебры, геометрии, математического анализа, дифференциального и интегрального исчислений, дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей и математической статистики.

4. Объем дисциплины и виды учебной работы Общая трудоемкость дисциплины составляет 16 зачетных единиц.

Вид учебной работы	Всего		Семе	естры	
	часов	1	2	3	
Аудиторные занятия (всего)	266	90	86	90	
В том числе:	-	-	-	-	-
Лекции	106	36	34	36	
Лабораторные работы (ЛР)					
Практические занятия (ПЗ)	160	54	52	54	
Семинары (С)					
Коллоквиумы (К)					
Курсовой проект/(работа) (аудиторная нагрузка)					
Другие виды аудиторной работы					
Контрольные работы					
Самостоятельная работа (всего)	202	54	58	90	
В том числе:	-		-	-	-
Курсовой проект (работа) (самостоятельная					
работа)					
Расчетно-графические работы					
Реферат					
Другие виды самостоятельной работы					
Подготовка к практическим занятиям	174	44	50	80	
Подготовка к контрольным работам	22	8	6	8	
Подготовка к коллоквиуму	6	2	2	2	
Вид промежуточной аттестации -экзамен	108	36	36	36	
Общая трудоемкость час	576	180	180	216	
Зачетные Единицы Трудоемкости	16	5	5	6	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия	Курсовой П/Р (КРС)	Самост. работа ступента	Всего час. (без экзам)	Формируе мые компетен ции (ОК, ПК)
1.	Элементы линейной алгебры.	9		13		13	35	ОК-1
2.	Аналитическая геометрия.	9		14		14	37	ОК-1
3.	Введение в математический анализ.			13		13	35	ОК-1
4.	Дифференциальное исчисление.	9		14		14	37	ОК-1
5.	Неопределённый и определённый интеграл.	11		17		19	47	ОК-1
6.	Кратные, криволинейные интегралы, элементы теории поля.	11		17		19	47	OK-1
7.	Дифференциальные уравнения.	12		18		20	50	ОК-1
8.	Функции комплексного переменного			13		22	44	ОК-1
9.	Числовые и функциональные ряды			14		23	46	ОК-1
10.	Элементы теории вероятности			13		22	44	ОК-1
11	Элементы математической статистики	9		14		23	46	ОК-1

5.2. Содержание разделов дисциплины (по лекциям)

№ п/п	Наименовани е разделов	Содержание разделов	Трудоемкость (час.)	Формируемые компетенции (ОК, ПК)
Семе	естр 1			
1.			9	OK-1
2.	Аналитическа я геометрия.	Прямая на плоскости, плоскость в пространстве, прямая в пространстве, кривые и поверхности второго порядка.	9	OK-1
3.	Введение в математически й анализ.	Элементарные свойства функций, пределы, непрерывность.	9	ОК-1
4.	Дифференци- альное исчисление.	Производная, частная производная, градиент. Формула Тейлора. Свойства функций, связанные с производными. Уравнение касательной.	9	OK-1
Семе	естр 2			
5.	Неопределён- ный и определённый интеграл.	Неопределённый интеграл и методы его вычисления. Определённый интеграл. Несобственный интеграл, сходимость.	11	OK-1
6.	Кратные, криволинейны е интегралы, элементы теории поля.	Двойные, тройные интегралы. Полярные, сферические, цилиндрические координаты. Криволинейные и поверхностные интегралы 1 и 2 рода. Потенциал поля.	11	OK-1
7.	Дифференциал ьные уравнения.	Дифференциальные уравнения 1-го порядка, их типы и методы решений, задача Коши. Линейные дифференциальные уравнения порядка п, системы.	12	OK-1
	естр 3			<u> </u>
8.	Функции комплексного переменного	Действия с комплексными числами и функции от них. Дифференцирование комплексных функций. Условия Коши-Римана. Интегрирование по кривой в комплексной плоскости. Интегральная формула Коши.	9	OK-1
9.	Числовые и функциональн ые ряды	Числовые ряды, признаки сходимости. Функциональные ряды, область сходимости. Степенные ряды. Ряды Тейлора и Лорана.	9	OK-1
10.	Элементы теории вероятности	Случайные события, случайные величины.	9	OK-1
11.	Элементы математическо й статистики	Статистические характеристики выборки и оценка параметров распределения. Проверка статистических гипотез и элементы корреляционного анализа	9	OK-1

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№ п/п	Наименование обеспечиваемых (последующих)	необх	одим	ю изуче	ние об	сциплин еспечива ующих) д	ющи	х (пр	едыду	ля кото ⁄щих) і	рых	
11/11	дисциплин										140	1 44
1	Информатика и информационные технологии	+	+	3	4	5	6	7	+	9	10	11
2	Физика	+	+	+	+	+	+	+	+	+		
3	Автоматика и управление	+	+	+	+	+	+	+	+	+		
4	Электродинамика и распространение радиоволн	+	+	+	+	+	+	+	+	+		
5	Моделирование систем и процессов	+	+	+	+	+	+	+	+	+	+	+
6	Компьютерные сети и интернет-технологии	+	+	+	+	+	+	+				
7	Безопасность жизнедеятельности	+		+	+	+			+			
8	Инженерная и компьютерная графика	+	+	+	+	+	+	+	+			
9	Механика	+	+	+	+	+	+	+	+	+		
10	Материаловедение и технология материалов	+	+	+	+	+	+	+	+	+		
11	Проблемно ориентированные пакеты прикладных программ в радиотехнике	+	+	+	+	+	+	+	+	+	+	+
12	Электротехника и электроника	+	+	+	+	+	+	+	+	+		
13	Метрология, стандартизация и сертификация	+	+	+	+	+	+	+	+	+	+	+
14	Радиоизмерения	+	+	+	+	+	+	+	+	+	+	+
15	Радиотехнические цепи и сигналы	+	+	+	+	+	+	+	+	+	+	+
16	Надежность и техническая диагностика	+	+	+	+	+	+	+	+	+	+	+
17	Схемотехника	+	+	+	+	+	+	+	+	+	+	+
18	Программируемые микроэлектронные устройства	+	+	+	+	+	+	+	+	+	+	+
19	Формирование и передача сигналов	+	+	+	+	+	+	+	+	+	+	+
20	Прием и обработка сигналов	+	+	+	+	+	+	+	+	+	+	+
21	Антенны и устройства сверхвысокой частоты (СВЧ)	+	+	+	+	+	+	+	+	+	+	+
22	Радиолокационные системы	+	+	+	+	+	+	+	+	+	+	+
23	Радионавигационные системы	+	+	+	+	+	+	+	+	+	+	+
24	Системы связи и телекоммуникаций	+	+	+	+	+	+	+	+	+	+	+
25	Спутниковые системы навигации, связи и наблюдения	+	+	+	+	+	+	+	+	+	+	+
26	Техническая эксплуатация радиоэлектронного оборудования	+	+	+	+	+	+	+	+	+	+	+
27	Устройства отображения информации	+	+	+	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень		Bı	иды занят	ий		Формы контроля
компетенций	Л	Лаб	Лаб Пр. КР/КП СРС		CPC	
ОК-1	+		+		+	Опрос на лекции, практическом занятии.
						Коллоквиум. Контрольная работа. Экзамен.

Л – лекция, Пр – практические и семинарские занятия, Лаб – лабораторные работы, КР/КП – курсовая работа/проект, СРС – самостоятельная работа студента

6. Методы и формы организации обучения

Технологии интерактивного обучения при разных формах занятий в часах

<u>.</u>			
Формы Методы	Лекции (час)	Практические/ семинарские Занятия (час)	Всего
Обсуждение материала в ходе мультимедийных презентаций	20		20
Изучение методов решений с использованием сайта кафедры, других сайтов, он-лайн тренажёров		32	32
Итого интерактивных занятий	20	32	52

7. Лабораторный практикум не предусмотрено

8. Практические занятия (семинары)

№ п/п	Наименование разделов	Содержание разделов	Трудоемкость (час.)	Формируемые компетенции (ОК, ПК)
Сем	естр 1			
1.	Элементы линейной алгебры.	Матрицы, действия над ними, определители, ранг матрицы, линейные пространства, линейная зависимость и независимость, системы линейных однородных и неоднородных уравнений, фундаментальная система решений. Линейные векторные пространства, выражение векторов в разных базисах.	13	OK-1
2.	Аналитическая геометрия.	Прямая на плоскости, плоскость в пространстве, прямая в пространстве, кривые и поверхности второго порядка.	14	ОК-1
3.	Введение в математический анализ.	Элементарные свойства функций, пределы, непрерывность.	13	OK-1
4.	Дифференци- альное исчисление.	Производная, частная производная, градиент. Формула Тейлора. Свойства функций, связанные с производными. Уравнение касательной.	14	OK-1
Сем	естр 2			
5.	Неопределён- ный и определённый интеграл.	Неопределённый интеграл и методы его вычисления. Определённый интеграл. Несобственный интеграл, сходимость.	17	OK-1
6.	Кратные, криволинейные интегралы, элементы теории поля.	Двойные, тройные интегралы. Полярные, сферические, цилиндрические координаты. Криволинейные и поверхностные интегралы 1 и 2 рода. Потенциал поля.	17	OK-1
7.	Дифференциаль ные уравнения.	Дифференциальные уравнения 1-го порядка, их типы и методы решений, задача Коши. Линейные дифференциальные уравнения порядка п, системы.	18	OK-1

Сем	естр 3			
8.	Функции комплексного переменного	Действия с комплексными числами и функции от них. Дифференцирование комплексных функций. Условия Коши-Римана. Интегрирование по кривой в комплексной плоскости. Интегральная формула Коши.	13	OK-1
9.	Числовые и функциональны е ряды	Числовые ряды, признаки сходимости. Функциональные ряды, область сходимости. Степенные ряды. Ряды Тейлора и Лорана.	14	OK-1
10.	Элементы теории вероятности	Случайные события, случайные величины.	13	OK-1
11.	Элементы математической статистики	Статистические характеристики выборки и оценка параметров распределения. Проверка статистических гипотез и элементы корреляционного анализа	14	OK-1

9. Самостоятельная работа

№ π/π	№ раздела дисциплины из табл. 5.1	Виды самостоятельной работы	Трудо- емкость (час.)	Компе- тенции ОК, ПК	Контроль выполнения работы
Семе	естр 1				
1.	1	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Матрицы, действия над ними, определители, ранг матрицы, линейные пространства, линейная зависимость и независимость, системы линейных однородных и неоднородных уравнений, фундаментальная система решений. Линейные векторные пространства, выражение векторов в разных базисах.	20	OK-1	Опрос на практических занятиях. Контрольная работа. Тестирование.
2.	2	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Прямая на плоскости, плоскость в пространстве, прямая в пространстве, кривые и поверхности второго порядка.	20	OK-1	Опрос на практических занятиях. Контрольная работа. Тестирование.
3.	3	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Элементарные свойства функций, пределы, непрерывность.	20	OK-1	Опрос на практических занятиях. Контрольная работа. Тестирование.
4.	4	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Производная, частная производная, градиент. Формула Тейлора. Свойства функций, связанные с производными. Уравнение касательной.	19	OK-1	Опрос на практических занятиях. Контрольная работа. Тестирование.
5.	1, 2, 3	Подготовка и сдача экзамена	36	ОК-1	Оценка на экзамене

№	№ раздела	Виды самостоятельной работы	Трудо-	Компе-	Контроль выполнения
Π/Π	дисциплины		емкость	тенции	работы
	из табл. 5.1		(час.)	ОК, ПК	
Сем	естр 2				
1.	5	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Неопределённый интеграл и методы его вычисления. Определённый интеграл. Несобственный интеграл, сходимость.	27	OK-1	Опрос на практических занятиях. Контрольная работа.
2.	6	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Двойные, тройные интегралы. Полярные, сферические, цилиндрические координаты. Криволинейные и поверхностные интегралы 1 и 2 рода. Потенциал поля.	26	OK-1	Опрос на практических занятиях. Контрольная работа.
3.	7	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Дифференциальные уравнения 1-го порядка, их типы и методы решений, задача Коши. Линейные дифференциальные уравнения порядка п, системы.	26	OK-1	Опрос на практических занятиях. Контрольная работа.
4.	5, 6, 7	Подготовка и сдача экзамена	36	ОК-1	Оценка на экзамене

№	№ раздела	Виды самостоятельной работы	Трудо-	Компе-	Контроль выполнения
Π/Π	дисциплины		емкость	тенции	работы
	из табл. 5.1		(час.)	ОК, ПК	
Семо	естр 3				
1.	8	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Действия с комплексными числами и функции от них. Дифференцирование комплексных функций. Условия Коши-Римана. Интегрирование по кривой в комплексной плоскости. Интегральная формула Коши.	20	OK-1	Опрос на практических занятиях. Контрольная работа.
2.	9	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Числовые ряды, признаки сходимости. Функциональные ряды, область сходимости. Степенные ряды. Ряды Тейлора и Лорана.	20	OK-1	Опрос на практических занятиях. Контрольная работа.
3.	10	Изучение теоретического материала, подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Случайные события, случайные величины.	20	OK-1	Опрос на практических занятиях. Контрольная работа.
4.	11	Изучение теоретического материала,	20	ОК-1	Опрос на

		подготовка к практическим занятиям. Решение задач, подготовка к контрольной работе. Темы: Статистические характеристики выборки и оценка параметров распределения. Проверка статистических гипотез и элементы корреляционного анализа			практических занятиях. Контрольная работа.
5.	8,9,10,11	Подготовка и сдача экзамена	36	ОК-1	Оценка на экзамене

10. Примерная тематика курсовых проектов (работ) не предусмотрено

11. Рейтинговая система для оценки успеваемости студентов

Таблица 11.1 Балльные оценки для элементов контроля.

Семестр 1

	Максимальный	Максимальный	Максимальный	Всего за
	балл на 1 к.т.	балл между 1 и	балл между 2 -	семестр.
		2 к.т.	й к.т.и на	
			конец семестра	
Контрольные работы, тесты.	22	12	16	50
Компонент своевременности.	3	3	4	10
Коллоквиум по программе			10	10
семестра.				
Итого максимум за период:	25	15	30	70
Сдача экзамена (максимум)				30
Нарастающим итогом:	25	40	70	100

Семестр 2

	Максимальный	Максимальный	Максимальный	Всего за
	балл на 1 к.т.	балл между 1 и	балл между 2 -	семестр.
		2 к.т.	й к.т.и на	
			конец семестра	
Контрольные работы, тесты.	22	12	16	50
Компонент своевременности.	3	3	4	10
Коллоквиум по программе			10	10
семестра.				
Итого максимум за период:	25	15	30	70
Сдача экзамена (максимум)				30
Нарастающим итогом:	25	40	70	100

	Максимальный	Максимальный	Максимальный	Всего за
	балл на 1 к.т.	балл между 1 и	балл между 2 -	семестр.
		2 к.т.	й к.т.и на	
			конец семестра	
Контрольные работы, тесты.	22	12	16	50
Компонент своевременности.	3	3	4	10
Коллоквиум по программе			10	10
семестра.				

Итого максимум за период:	25	15	30	70
Сдача экзамена (максимум)				30
Нарастающим итогом:	25	40	70	100

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 50% до 69% от максимальной суммы баллов на дату КТ	3
< 50 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ЕСТЅ)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
(зачтено)	70 - 74	D (vyan yamanyany va)
3 (удовлетворительно)	65 – 69	D (удовлетворительно)
(зачтено)	50 - 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 50 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины:

12.1 Основная литература

- 1. Магазинникова А.Л., Магазинников Л.И. Линейная алгебра. Аналитическая геометрия: учебное пособие. Томск: ТУСУР, 2010. 176 с. http://edu.tusur.ru/training/publications/2244 (дата обращения 19.01.2017)
- 2. Магазинников Л.И., Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования: учебное пособие. Томск: ТУСУР, 2012. 206 с. https://edu.tusur.ru/publications/2258 (дата обращения 19.01.2017)
- 3. Магазинников Л.И., Магазинников А.Л. Дифференциальное исчисление: учебное пособие. Томск: ТУСУР, 2007. 191 с. http://edu.tusur.ru/training/publications/2246 (дата обращения 19.01.2017)
- 4. Ельцов А.А. Ельцова Т.А. Интегральное исчисление: учебное пособие. Томск: Эль-Контент, 2013. - 138c. https://edu.tusur.ru/training/publications/6063 (дата обращения 19.01.2017)
- 5. Ельцов А.А. Ельцова Т.А. Дифференциальные уравнения: учебное пособие. Томск: Эль-Контент, 2013. - 104с. https://edu.tusur.ru/training/publications/6062 (дата обращения 19.01.2017)

12.2. Дополнительная литература

- 1. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: учебник. СПб.: Лань, 2015. 445 с. http://e.lanbook.com/books/element.php?pl1_id=58162 (дата обращения 19.01.2017)
- 2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1: учебник. СПб.: Лань, 2016. 608 с. http://e.lanbook.com/books/element.php?pl1_id=71768 (дата обращения 19.01.2017)
- 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2: учебник. СПб.: Лань, 2016. 800 с. http://e.lanbook.com/books/element.php?pl1_id=71769 (дата обращения 19.01.2017)
- 4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 3: учебник. СПб.: Лань, 2009. 657 с. http://e.lanbook.com/books/element.php?pl1_id=409 (дата

- обращения 19.01.2017)
- 5. Демидович Б.П., Моденов В.П. Дифференциальные уравнения: учебное пособие. СПб.: Лань, 2008. 277 с. http://e.lanbook.com/books/element.php?pl1_id=126 (дата обращения 19.01.2017)
- 6. Петрушко И.М. Курс высшей математики. Теория функций комплексной переменной: учебное пособие. СПб.: Лань, 2010. 364 с. http://e.lanbook.com/books/element.php?pl1_id=526 (дата обращения 19.01.2017)

12.3. Учебно-методические пособия и программное обеспечение

12.3.1 Обязательные учебно-методические пособия

Практические занятия проводятся по учебным пособиям:

- 1. Магазинников Л.И. Магазинникова А.Л. Высшая математика І. Практикум по линейной алгебре и аналитической геометрии: Учебное пособие. Томск: ТУСУР, 2007. 163 с. (97 экз.) http://edu.tusur.ru/publications/37 (дата обращения 19.01.2017)
- 2. Магазинников Л.И. Магазинников А.Л. Высшая математика І. Практикум по дифференциальному исчислению: Учебное пособие Томск: ТУСУР, 2007. 212 с. Экземпляров в библиотеке ТУСУРа: 99.
- 3. Ельцов А.А. Ельцова Т.А. Интегральное исчисление: учебное пособие. Томск: Эль-Контент, 2013. 138с. https://edu.tusur.ru/training/publications/6063 (дата обращения 19.01.2017)
- 4. Ельцов А.А. Ельцова Т.А. Дифференциальные уравнения: учебное пособие . Томск: Эль-Контент, 2013. 104с. https://edu.tusur.ru/training/publications/6062 (дата обращения 19.01.2017)
- 5. Магазинников Л.И., Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования: учебное пособие. Томск: ТУСУР, 2012. 206 с. https://edu.tusur.ru/publications/2258 (дата обращения 19.01.2017)

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

- 6. Магазинникова А.Л., Магазинников Л.И. Линейная алгебра. Аналитическая геометрия: учебное пособие. Томск: ТУСУР, 2010. 176 с. http://edu.tusur.ru/training/publications/2244 (дата обращения 19.01.2017)
- 7. Магазинников Л.И., Магазинников А.Л. Дифференциальное исчисление: учебное пособие. Томск: ТУСУР, 2007. 191 с. http://edu.tusur.ru/training/publications/2246 (дата обращения 19.01.2017)

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- * в форме электронного документа;
- * в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

* в форме электронного документа;

* в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- * в форме электронного документа;
- * в печатной форме.
- **12.4 Программное обеспечение.** Системы программирования Mathcad, Matlab, Maple, Mathematica, MathematicaPlayer, Adobe Acrobat Reader 9, PDF-XChange Viewer. Система дистанционного образования MOODLE для сопровождения самостоятельной работы студентов (методические материалы: текстовые, аудио и видеофайлы, демонстрации, индивидуальные задания и т.д.).
- **12.5 Базы данных, информационно-справочные и поисковые системы:** Ссылки с сайта кафедры на математические ресурсы и он-лайн тренажёры:
- 13. Материально-техническое обеспечение дисциплины
- **13.1 Общие требования к материально-техническому обеспечению дисциплины** Возможность работать в компьютерном классе из расчёта один компьютер на студента. Лекционные аудитории, оснащённые техникой для мультимедийных презентаций.
- 13.2 Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов с нарушениями зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приемапередачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

- 14 Фонд оценочных средств и методические рекомендации по организации изучения дисциплины
- 14.1 Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении 1 к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с ограниченными возможностями здоровья предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Таблица 14 — Дополнительные средства оценивания для студентов с инвалидностью

Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно-двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Приложение 1 Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ							
Пр	Проректор по учебной работе						
		П. Е. Троян					
‹ ‹	>>	2017 г.					

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ *ПО УЧЕБНОЙ ДИСЦИПЛИНЕ* высшая математика

Уровень основной образовательной программы – специалитет

Направление подготовки 25.05.03 «Техническая эксплуатация транспортного радиооборудования»

Профиль: Техническая эксплуатация радиооборудования воздушных судов и аэропортов

Форма обучения очная

Факультет радиоконструкторский факультет (РКФ)

Кафедра: Конструирования и производства радиоаппаратуры (КИПР)

Курс 1, 2 Семестр 1, 2, 3

Учебный план набора 2011 года.

Зачет не предусмотрено **Экзамен** 1, 2, 3 семестр

Диф. зачет не предусмотрено

Томск 2017

1 Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОК-1	способность к абстрактному мышлению, анализу, синтезу.	Должен знать основные понятия и методы решения задач математического анализа, обыкновенных дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей и математической статистики использующихся при изучений общетеоретических и специальных дисциплин и в инженерной практике; Должен уметь применять математические методы для решения практических задач и пользоваться при необходимости математической литературой; Должен владеть методами решения задач математического анализа, дифференциального и интегрального исчислений, дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей и математической статистики.

2 Реализация компетенций

1 Компетенция ОК-1

ОК-1: способность к абстрактному мышлению, анализу, синтезу.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 2.

Таблица 2— Этапы формирования компетенции и используемые средства оценивания

Содержание этапов	Знает основы математического анализа, обыкновенных дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей и математической статистики, использующихся при изучений общетеоретических и специальных дисциплин и в инженерной практике.	Умеет применять знания из области математического анализа, дифференциального и интегрального исчислений, дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей, математической статистики, соответствующий математический аппарат для освоения других дисциплин, предусмотренных учебным планом, и решения профессиональных задач.	Владеет основными методами решения задач математического анализа, дифференциального и интегрального исчислений, дифференциальных уравнений, теории функций комплексной переменной, теории вероятностей, математической статистики и соответствующим математическим аппаратом.
Виды занятий	 Лекции; Практические занятия; Консультации; Самостоятельная работа студентов 	 Практические занятия; Консультации; Выполнение домашнего задания; Самостоятельная работа студентов 	 Практические занятия; Консультации; Выполнение индивидуального задания; Самостоятельная работа студентов
Используемые средства оценивания	 Контрольная работа; Ответ на коллоквиуме; Экзамен 	 Контрольная работа; Оформление домашнего задания; Конспект материала, вынесенного на самостоятельную работу Экзамен 	 Контрольная работа; Оформление и защита индивидуального задания; Экзамен

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично	Обладает системными	Обладает диапазоном	Контролирует

3.

(высокий уровень)	и глубокими знаниями в пределах изучаемой дисциплины с пониманием границ применимости	практических умений, требуемых для развития творческих решений, абстрагирования проблем	выполняемую работу, проводит оценку выполненной работы, модифицирует этапы работы
Хорошо (базовый уровень)	Обладает знаниями основных понятий на уровне определений и взаимосвязей между ними в пределах изучаемой дисциплины	Обладает диапазоном практических умений, требуемых для решения типовых задач с элементами исследования	Оперирует основными методами решения задач и исследований
Удовлетворитель но (пороговый уровень)	Обладает знаниями основных понятий на уровне названий и обозначений, алгоритмов решения типовых задач	Обладает основными умениями, требуе- мыми для выполнения простых задач	Работает при прямом наблюдении и контроле

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	 раскрывает сущность математических понятий, проводит их характеристику; анализирует связи между различными математическими понятиями; обосновывает выбор математического метода, план, этапы решения задачи. 	 свободно применяет методы решения задач в незнакомых ситуациях; умеет математически показать и аргументировано доказать положения изучаемой дисциплины. 	 свободно оперирует методами изучаемой дисциплины; организует коллективное выполнение работы, затрагивающей изучаемую дисциплину; свободно владеет разными способами представления математической информации.
Хорошо (базовый уровень)	 дает определения основных понятий и приводит примеры их применения; понимает связи 	 способен различить стандартные и новые ситуации при решении задач; умеет корректно выражать и 	 критически осмысливает полученные знания; способен работать в коллективе, задачи которого затрагивают

	между различными понятиями; аргументирует выбор метода решения задачи; составляет план решения задачи.	аргументировано обосновывать положения изучаемой дисциплины.	изучаемую дисциплину.
Удовлетворитель но (пороговый уровень)	 воспроизводит основные факты, идеи; распознает основные математические объекты; знает алгоритмы решения типовых задач. 	 умеет применять алгоритмы решения типовых задач на практике; умеет работать со справочной литературой; умеет оформлять результаты своей работы. 	 поддерживает разговор на темы изучаемой дисциплины; владеет основной терминологией изучаемой дисциплины.

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы:

типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или)
 опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

Контрольная работа:

Семестр 1

1	Контрольная работа №1. «Векторная алгебра»	
2	Контрольная работа №2. «Прямая на плоскости. Плоскость. Прямая в	
	пространстве»	
3	Контрольная работа №3 «Начала анализа».	
4	Контрольная работа №4 «Дифференциальное исчисление»	

Семестр 2

1	Контрольная работа №1. «Неопределённый интеграл»		
2	Контрольная работа №2. «Определённый интеграл и его приложения.		
	Несобственный интеграл»		
3	Контрольная работа №3 «Кратные интегралы. Криволинейные и		
	поверхностные интегралы. Элементы теории поля»		
4	Контрольная работа №4. «Дифференциальные уравнения первого		
	порядка. Дифференциальные уравнения высших порядков,		
	допускающие понижение порядка»		

1	Контрольная работа №1 «Теория функций комплексного переменного
	>>

2	2	Контрольная работа №2. «Числовые и функциональные ряды»
3	3	Контрольная работа №3. «Случайные события и основные понятия
		теории вероятностей»
	1	Контрольная работа №4. «Случайные величины»

Темы коллоквиумов:

Семестр 1

Предел, непрерывность и дифференцируемость функции.

Семестр 2

Теория поля.

Семестр 3

Числовые и функциональные ряды.

Выполнение домашнего задания:

- 1. Матрицы и действия над ними. Определитель порядка *n*. Минор и алгебраическое дополнение. Вычисление определителей.
- 2. Обратная матрица. Решение матричных уравнений.
- 3. Линейные пространства. Линейно зависимые и линейно независимые системы векторов.
- 4. Ранг матрицы. Теорема о базисном миноре. Решение определенных систем. Матричный способ Системы линейных алгебраических уравнений. Классификация решения систем линейных уравнений. Метод Крамера.
- **5.** Решение неопределенных систем методом Гаусса. Однородные системы линейных уравнений.
- 6. Линейный оператор и его матрица. Собственные числа и собственные векторы линейного оператора.
- 7. Уравнения кривой на плоскости. Полярная система координат.
- 8. Прямая линия на плоскости.
- 9. Уравнение поверхности в пространстве. Плоскость.
- 10. Прямая в пространстве.
- 11. Последовательность и ее предел.
- 12. Предел функции.
- 13. Предел функции. Методы нахождения пределов.
- 14. Предел функции. Первый замечательный предел и его следствия.
- 15. Предел функции. Второй замечательный предел и его следствия.
- 16. Непрерывность функции. Классификация точек разрыва.
- 17. Бесконечно малые и бесконечно большие функции.
- 18. Производная и дифференциал функции.
- 19. Производные и дифференциалы высших порядков.
- 20. Дифференцирование параметрических и неявно заданных функций.
- 21. Правило Лопиталя.
- 22. Полное исследование функции и построение графика.
- 23. Производная матрица и ее строение. Дифференциал функции. Градиент. Производная по направлению.
- 24. Производные и дифференциалы высших порядков. Формула Тейлора.
- 25. Геометрический смысл производной. Экстремум функции нескольких переменных.
- 26. Коллоквиум: Предел, непрерывность и дифференцируемость функции.
- 27. Условный экстремум. Наименьшее и наибольшее значения функции в области.

Семестр 2

- 1. Комплексные числа, различные формы записи комплексных чисел. Комплексная плоскость. Операции над комплексными числами.
- 2. Последовательность комплексных чисел.
- 3. Неопределенный интеграл. Правила интегрирования. Подведение под знак дифференциала.
- 4. Метод интегрирования по частям.
- 5. Интегрирование простейших дробей.
- 6. Интегрирование рациональных дробей, интегрирование функций, рациональных относительно тригонометрических функций.
- 7. Интегрирование некоторых иррациональностей.
- 8. Определённый интеграл. Формула Ньютона-Лейбница. Замена переменных в определённом интеграле. Метод интегрирования по частям.
- 9. Несобственные интегралы с бесконечными пределами. Несобственные интегралы от неограниченных функций.
- 10. Теоремы сравнения. Абсолютная и условная сходимость. Признаки сходимости.
- 11. Двойной интеграл, его вычисление в декартовых координатах.
- 12. Замена переменных в двойном интеграле. Переход к полярным координатам.
- 13. Тройной интеграл, его вычисление в декартовых координатах.
- 14. Замена переменной в тройном интеграле. Переход к цилиндрической и сферической системе координат.
- 15. Криволинейные интегралы по длине дуги.
- 16. Криволинейные интегралы по координатам. Условия независимости криволинейного интеграла от пути интегрирования. Работа векторного поля вдоль кривой. Потенциальные поля. Ротор векторного поля. Восстановление функции по ее полному дифференциалу.
- 17. Поверхностные интегралы по площади поверхности.
- 18. Поверхностные интегралы по координатам. Поток векторного поля через поверхность. Дивергенция векторного поля. Формулы Грина, Стокса и Остроградского. Их запись в терминах теории поля.
- 19. Коллоквиум: Теория поля.
- 20. Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными,
- 21. Однородные уравнения,
- 22. Линейные уравнения. Уравнения Бернулли.
- 23. Уравнения в полных дифференциалах.
- 24. Уравнения высших порядков, допускающие понижение порядка.
- 25. Теория линейных дифференциальных уравнений порядка *п*.
- 26. Системы дифференциальных уравнений. Системы линейных дифференциальных уравнений.

- 1. Функции комплексного переменного. Нули аналитической функции. Особые точки, их классификация.
- 2. Вычеты. Основная теорема о вычетах. Вычисление вычетов. Применение вычетов к вычислению интегралов.
- 3. Преобразование Лапласа. Основные свойства преобразования Лапласа. Решение линейных дифференциальных уравнений с постоянными коэффициентами операционным методом.

- 4. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами операционным методом.
- 5. Разложение функции в тригонометрический ряд Фурье. Понятие о сходимости в среднем и среднеквадратичном. Экстремальное свойство отрезков ряда Фурье.
- 6. Разложение в ряд Фурье по косинусам и синусам. Комплексная форма тригонометрического ряда Фурье.
- 7. Числовые ряды. Сходимость и сумма ряда.
- 8. Абсолютная и условная сходимость. Необходимое условие сходимости. Свойства абсолютно сходящихся рядов.
- 9. Признаки абсолютной сходимости.
- 10. Знакочередующиеся ряды, признак Лейбница.
- 11. Функциональные ряды. Область сходимости.
- 12. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов.
- 13. Степенные ряды. Теорема Абеля. Ряд Тейлора.
- 14. Ряд Лорана. Применение степенных рядов.
- 15. Коллоквиум: Числовые и функциональные ряды.
- 16. Понятие случайного эксперимента. Понятие события. Классификация событий. Операций над событиями. Понятие вероятности события. Задачи на классическое определение вероятности.
- 17. Понятие вероятности события. Задачи на геометрическое определение вероятности. Условные вероятности. Зависимые и независимые события. Формула умножения вероятностей. Формула сложения вероятностей.
- 18. Формула полной вероятности. Формула Байеса. Схема испытаний Бернулли. Формула Бернулли.
- 19. Одномерные случайные величины. Понятие случайной величины и её закона распределения.
- 20. Одномерные дискретные случайные величины. Ряд распределения.
- 21. Функция распределения одномерной случайной величины и её свойства. Плотность распределения одномерной случайной величины и её свойства.
- 22. Математическое ожидание. Мода, медиана, квантиль случайной величины. Дисперсия случайной величины. Моменты случайной величины. Функция одного случайного аргумента.
- 23. Биномиальное распределение. Распределение Пуассона. Показательное распределение. Нормальное распределение.
- 24. Многомерные случайные величины. Понятие двумерной дискретной случайной величины и её матрица распределения. Функция распределения многомерной случайной величины и её свойства. Плотность распределения системы случайных величин и её свойства.
- 25. Характеристики связи двух случайных величин. Ковариация и коэффициент корреляции. Необходимое условие независимости случайных величин. Свойства коэффициента корреляции. Понятие регрессии.
- 26. Понятие выборки. Простейшие способы обработки выборки. Эмпирическая функция распределения. Выборочные параметры распределения.

27. Понятие оценки числового параметра. Требования к оценке. Оценка математического ожидания и дисперсии. Понятие о доверительном интервале. Построение доверительного интервала для оценки математического ожидания. Статистические методы обработки экспериментальных данных.

Темы для самостоятельной работы:

Семестр 1

- 1. Матрицы и действия над ними. Определитель порядка *n*. Минор и алгебраическое дополнение. Вычисление определителей.
- 2. Обратная матрица. Решение матричных уравнений.
- 3. Линейные пространства. Линейно зависимые и линейно независимые системы векторов.
- 4. Ранг матрицы. Теорема о базисном миноре. Решение определенных систем. Матричный способ Системы линейных алгебраических уравнений. Классификация решения систем линейных уравнений. Метод Крамера.
- **5.** Решение неопределенных систем методом Гаусса. Однородные системы линейных уравнений.
- 6. Линейный оператор и его матрица. Собственные числа и собственные векторы линейного оператора.
- 7. Уравнения кривой на плоскости. Полярная система координат.
- 8. Прямая линия на плоскости.
- 9. Уравнение поверхности в пространстве. Плоскость.
- 10. Прямая в пространстве.
- 11. Последовательность и ее предел.
- 12. Предел функции.
- 13. Предел функции. Методы нахождения пределов.
- 14. Предел функции. Первый замечательный предел и его следствия.
- 15. Предел функции. Второй замечательный предел и его следствия.
- 16. Непрерывность функции. Классификация точек разрыва.
- 17. Бесконечно малые и бесконечно большие функции.
- 18. Производная и дифференциал функции.
- 19. Производные и дифференциалы высших порядков.
- 20. Дифференцирование параметрических и неявно заданных функций.
- 21. Правило Лопиталя.
- 22. Полное исследование функции и построение графика.
- 23. Производная матрица и ее строение. Дифференциал функции. Градиент. Производная по направлению.
- 24. Производные и дифференциалы высших порядков. Формула Тейлора.
- 25. Геометрический смысл производной. Экстремум функции нескольких переменных.
- 26. Коллоквиум: Предел, непрерывность и дифференцируемость функции.
- 27. Условный экстремум. Наименьшее и наибольшее значения функции в области.

- 1. Комплексные числа, различные формы записи комплексных чисел. Комплексная плоскость. Операции над комплексными числами.
- 2. Последовательность комплексных чисел.
- 3. Неопределенный интеграл. Правила интегрирования. Подведение под знак дифференциала.
- 4. Метод интегрирования по частям.
- 5. Интегрирование простейших дробей.
- 6. Интегрирование рациональных дробей, интегрирование функций, рациональных относительно тригонометрических функций.
- 7. Интегрирование некоторых иррациональностей.
- 8. Определённый интеграл. Формула Ньютона-Лейбница. Замена переменных в

- определённом интеграле. Метод интегрирования по частям.
- 9. Несобственные интегралы с бесконечными пределами. Несобственные интегралы от неограниченных функций.
- 10. Теоремы сравнения. Абсолютная и условная сходимость. Признаки сходимости.
- 11. Двойной интеграл, его вычисление в декартовых координатах.
- 12. Замена переменных в двойном интеграле. Переход к полярным координатам.
- 13. Тройной интеграл, его вычисление в декартовых координатах.
- 14. Замена переменной в тройном интеграле. Переход к цилиндрической и сферической системе координат.
- 15. Криволинейные интегралы по длине дуги.
- 16. Криволинейные интегралы по координатам. Условия независимости криволинейного интеграла от пути интегрирования. Работа векторного поля вдоль кривой. Потенциальные поля. Ротор векторного поля. Восстановление функции по ее полному дифференциалу.
- 17. Поверхностные интегралы по площади поверхности.
- 18. Поверхностные интегралы по координатам. Поток векторного поля через поверхность. Дивергенция векторного поля. Формулы Грина, Стокса и Остроградского. Их запись в терминах теории поля.
- 19. Коллоквиум: Теория поля.
- 20. Дифференциальные уравнения первого порядка. Уравнения с разделяющимися переменными,
- 21. Однородные уравнения.
- 22. Линейные уравнения. Уравнения Бернулли.
- 23. Уравнения в полных дифференциалах.
- 24. Уравнения высших порядков, допускающие понижение порядка.
- 25. Теория линейных дифференциальных уравнений порядка *n*.
- 26. Системы дифференциальных уравнений. Системы линейных дифференциальных уравнений.

- 1. Функции комплексного переменного. Нули аналитической функции. Особые точки, их классификация.
- 2. Вычеты. Основная теорема о вычетах. Вычисление вычетов. Применение вычетов к вычислению интегралов.
- 3. Преобразование Лапласа. Основные свойства преобразования Лапласа. Решение линейных дифференциальных уравнений с постоянными коэффициентами операционным методом.
- 4. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами операционным методом.
- 5. Разложение функции в тригонометрический ряд Фурье. Понятие о сходимости в среднем и среднеквадратичном. Экстремальное свойство отрезков ряда Фурье.
- 6. Разложение в ряд Фурье по косинусам и синусам. Комплексная форма тригонометрического ряда Фурье.
- 7. Числовые ряды. Сходимость и сумма ряда.
- 8. Абсолютная и условная сходимость. Необходимое условие сходимости. Свойства абсолютно сходящихся рядов.
- 9. Признаки абсолютной сходимости.
- 10. Знакочередующиеся ряды, признак Лейбница.
- 11. Функциональные ряды. Область сходимости.

- 12. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов.
- 13. Степенные ряды. Теорема Абеля. Ряд Тейлора.
- 14. Ряд Лорана. Применение степенных рядов.
- 15. Коллоквиум: Числовые и функциональные ряды.
- 16. Понятие случайного эксперимента. Понятие события. Классификация событий. Операций над событиями. Понятие вероятности события. Задачи на классическое определение вероятности.
- 17. Понятие вероятности события. Задачи на геометрическое определение вероятности. Условные вероятности. Зависимые и независимые события. Формула умножения вероятностей. Формула сложения вероятностей.
- 18. Формула полной вероятности. Формула Байеса. Схема испытаний Бернулли. Формула Бернулли.
- 19. Одномерные случайные величины. Понятие случайной величины и её закона распределения.
- 20. Одномерные дискретные случайные величины. Ряд распределения.
- 21. Функция распределения одномерной случайной величины и её свойства. Плотность распределения одномерной случайной величины и её свойства.
- 22. Математическое ожидание. Мода, медиана, квантиль случайной величины. Дисперсия случайной величины. Моменты случайной величины. Функция одного случайного аргумента.
- 23. Биномиальное распределение. Распределение Пуассона. Показательное распределение. Нормальное распределение.
- 24. Многомерные случайные величины. Понятие двумерной дискретной случайной величины и её матрица распределения. Функция распределения многомерной случайной величины и её свойства. Плотность распределения системы случайных величин и её свойства.
- 25. Характеристики связи двух случайных величин. Ковариация и коэффициент корреляции. Необходимое условие независимости случайных величин. Свойства коэффициента корреляции. Понятие регрессии.
- 26. Понятие выборки. Простейшие способы обработки выборки. Эмпирическая функция распределения. Выборочные параметры распределения.
- **27.** Понятие оценки числового параметра. Требования к оценке. Оценка математического ожидания и дисперсии. Понятие о доверительном интервале. Построение доверительного интервала для оценки математического ожидания. Статистические методы обработки экспериментальных данных.

Экзаменационные вопросы:

- 1. Определение линейного пространства.
- 2. Дайте определение понятий: линейная комбинация векторов, линейно зависимая и линейно независимая система векторов линейного пространства.

- 3. Сформулируйте теорему о необходимом и достаточном условии линейной зависимости системы векторов.
- 4. Приведите примеры линейных пространств.
- 5. Какое линейное пространство называется п-мерным?
- 6. Дайте определение базиса п-мерного линейного пространства.
- 7. Сформулируйте теорему о разложении вектора по базису в п-мерном линейном пространстве.
- 8. Дать определение координат вектора в линейном пространстве.
- 9. Сформулируйте теорему о сведении линейных операций над векторами к операциям над их координатами.
- 10. Как вводится операция сложения и умножения комплексных чисел.
- 11. Изображение комплексных чисел на плоскости. Сопряженные комплексные числа.
- 12. Дайте определение модуля и аргумента комплексного числа.
- 13. Тригонометрическая форма запаси комплексного числа.
- 14. Главное значение аргумента комплексного числа.
- 15. Как выражается arg(z) через функции arctg(x).
- 16. Сформулируйте теорему об умножение и делении комплексных чисел, записанных в тригонометрической форме.
- 17. Дайте определение $\sqrt[n]{z}$.
- 19. Дать определение матрицы размера m×n.
- 20. Привести примеры информации, которую удобно записывать в матричном виде.
- 21. Дайте определения квадратной, треугольной, диагональной и единичной матриц.
- 22. Какие матрицы называются равными?
- 23. Опишите операцию умножения матрицы на число.
- 24. Опишите операцию сложения матриц.
- 25. Опишите операцию умножения матриц.
- 26. Опишите операцию транспонирования матрицы.
- 27. Дайте определение перестановки и инверсии в ней. Как подсчитать число инверсий в перестановке ($\alpha_1, \alpha_2, \dots \alpha_n$)?
- 28. Для каких матриц вводится понятие определителя?
- 29. Опишите, как составляются слагаемые, входящие в определитель матрицы порядка п.
- 30. Дайте определение определителя матрицы порядка п.
- 31. Опишите правило вычисления определителя матрицы порядка 2.
- 32. Опишите правило вычисления определителя матрицы порядка 3.
- 33. Как изменится определитель матрицы при транспонировании матрицы?
- 34. Чему равен определитель матрицы, имеющий стоку или столбец, целиком состоящий из нулей?
- 35. Как изменится определитель матрицы, если её строку или столбец матрицы умножить на число α ?
- 36. Как изменится определитель матрицы, если в ней переставить две строки или два столбца?
- 37. Опишите, в чем заключается линейное свойство определителя матрицы.
- 38. Как изменится определитель матрицы, если к какой-либо её строке прибавить другую, умноженную на некоторое число?
- 39. Как изменится определитель матрицы, если к какой-либо строке, умноженной на число α, добавить другую строку, умноженную на число β?
- 40. Чему равен определитель матрицы, имеющий две пропорциональные строки?
- 41. Как связаны между собой определители матриц А и λ A?
- 42. Чему равен определитель произведения матриц А и В?
- 43. Дайте определение алгебраического дополнения A_i^j элемента a_i^j .
- 44. Сформулируйте две теоремы об алгебраических дополнениях.
- 45. Дайте определение минора M_i^j , соответствующего элементу a_i^j .

- 46. Сформулируйте теорему о связи минора M_i^j , соответствующего элементу a_i^j . и алгебраического дополнения элемента a_i^j .
- 47. Опишите, как свести вычисление определителя матрицы порядка n к вычислению определителя матрицы порядка (n-1).
- 48. Дайте определение обратной матрицы.
- 49. Какие матрицы имеют обратную матрицу?
- 50. Как найти элемент \boldsymbol{e}_{i}^{j} обратной матрицы?
- 51. Как найти матрицу X из уравнения $A \cdot X = B$, если $\det A \neq 0$?
- 52. Как найти матрицу X из уравнения X·A=B, если detA≠0?
- 53. Дайте определение минора порядка т матрицы А.
- 54. Дайте определение ранга матрицы.
- 55. Дайте определение базисного минора, базисных строк и столбцов матрицы.
- 56. Сформулируйте теорему о базисном миноре.
- 57. Сформулируйте правило, позволяющее определить линейно зависимые строки (столбцы) матрицы или нет.
- 58. Сформулируйте правило, позволяющее определить, является ли данная строка матрицы линейной комбинацией других строк или нет.
- 59. Сформулируйте теорему о необходимых и достаточных условиях равенства нулю определителя матрицы.
- 60. Определите преобразования матрицы, называемые элементарными.
- 61. Опишите практический способ отыскания ранга матрицы.
- 62. Какие формы записи систем линейных уравнений знаете? Запишите систему в матричной форме.
- 63. Дайте определение решения системы.
- 64. Дайте определения совместных, несовместных, определенных и неопределенных систем.
- 65. Сформулируйте теорему о совместности произвольной системы линейных уравнений.
- 66. Для каких систем линейных уравнений применимо правило Крамера? Запишите формулы Крамера.
- 67. Какие неизвестные системы называют свободными, а какие зависимыми?
- 68. Дайте определение общего и частного решений системы.
- 69. Сформулируйте две теоремы о существовании нетривиальных решений однородной системы.
- 70. Свойства решений системы линейных однородных уравнений.
- 71. Из каких свойств решений линейной однородной системы следует, что множество всех решений таких систем образует линейное пространство? Какова его размерность?
- 72. Дайте определение фундаментальной системы решений (ФСР) однородной системы линейных уравнений. Сколько решений содержит ФСР?
- 73. Дайте определение геометрического вектора AB, его модуля $|\overline{AB}|$ и нулевого вектора. Какие два геометрических вектора называются коллинеарными?
- 74. Как отложить геометрический вектор \bar{a} от точки A?
- 75. Как определяется операция сложения геометрических векторов $\overline{a_1} + \overline{a_2} + \overline{a_3} + \overline{a_4}$?
- 76. Как определяется операция умножения геометрического вектора на число?
- 77. Дать определение понятий: «Линейная комбинация геометрических векторов», «Линейно зависимые и линейно независимые системы геометрических векторов».
- 78. Понятие аффинного и декартова базиса в линейном пространстве геометрических векторов. Понятие координат геометрического вектора.
- 79. Что означает геометрически линейная зависимость системы двух геометрических векторов?
- 80. Какая система геометрических векторов называется компланарной? Что означает геометрически линейная зависимость системы из трех и более геометрических векторов?

- 81. Понятие аффинной и декартовой систем координат. Как называют оси в декартовой системе координат?
- 82. Понятие радиуса-вектора точки и координат точки. Как найти координаты геометрического вектора, задаваемого направленным отрезком, зная координаты конца и начала направленного отрезка?
- 83. Понятие проекции точки на ось и проекции вектора на ось. Чему равна проекция вектора \overline{AB} на ось \overline{e} , если ($\overline{AB} \land \overline{e}$)= φ ?
- 84. Дайте определение скалярного произведения геометрических векторов. Его свойства.
- 85. Как узнать, используя скалярное произведение, какой угол (прямой, тупой или острый) образуют геометрические векторы \bar{a} и \bar{b} ?
- 86. Запишите формулы вычисления скалярного произведения (\bar{a}, \bar{b}) , если известны декартовы координаты векторов \bar{a} и \bar{b} ?
- 87. Как, используя понятие скалярного произведения, найти длину вектора и расстояние между двумя точками?
- 88. Как найти $\Pi p_{\bar{a}} \bar{b}$, $\cos(\bar{a} \wedge \bar{b})$?
- 89. Дайте определение направляющих косинусов геометрического вектора. Как их найти?
- 90. Понятие орта геометрического вектора. Как найти координаты орта геометрического вектора?
- 91. Понятие правой и левой упорядоченной пары двух геометрического векторов. Понятие левой и правой упорядоченной тройки геометрического векторов.
- 92. Дать определение векторного произведения геометрических векторов a и b.
- 93. Свойства векторного произведения геометрических векторов.
- 94. Геометрический смысл модуля векторного произведения геометрических векторов.
- 95. Формула вычисления векторного произведения геометрических векторов, если известны декартовы координаты геометрических векторов.
- 96. Дать определения смешанного произведения трех геометрических векторов.
- 97. Геометрический смысл $|(\bar{a}, \bar{b}, \bar{c})|$ и знака $(\bar{a}, \bar{b}, \bar{c})$.
- 98. Как узнать компланарна ли тройка геометрических векторов \bar{a} , \bar{b} , \bar{c} или нет, используя понятие смешанного произведения геометрических векторов?
- 99. Формула вычисления смешанного произведения геометрических векторов по их известным декартовым координатам.
- 100. Понятие функции $f: x \subseteq R_n \rightarrow y \subseteq R_m$.
- 101. Дайте определение уравнения плоской кривой L относительно декартовой системы координат.
- 102. Запишите уравнение окружности с центром в точке (x_0, y_0) радиуса R.
- 103. Дайте определение уравнения поверхности S относительно декартовой системы координат.
- 104. Дайте определение сферы. Запишите уравнение сферы с центром в точке, $M_0(x_0,y_0,z_0)$ радиуса R.
- 105. Укажите способы задания кривой в пространстве.
- 106. Запишите в векторной и координатной форме уравнения прямой проходящей через точку $M_0(x_0, y_0)$ перпендикулярно вектору $\overline{N} = (A, B)$.
- 107. Запишите общее уравнение прямой на плоскости в декартовой системе координат. Охарактеризуйте его коэффициенты.
- 108. Охарактеризуйте прямые на плоскости, задаваемые неполными уравнениями Bx+D=0, Ay+D=0, Ax+By=0, x=0, y=0.
- 109. Запишите параметрические и канонические уравнения прямой на плоскости.
- 110. Запишите формулу вычисления расстояния от точки $M_0(x_0,y_0)$ до прямой Ax+By+C=0 на плоскости.

- 111. Запишите уравнение прямой с угловым коэффициентом, охарактеризуйте его коэффициенты.
- 112. Запишите формулы для вычисления угла между прямыми.
- 113. Как охарактеризовать взаимное расположение двух прямых $A_1x+B_1y+C_1=0$, $A_2x+B_2y+C_2=0$?
- 114. Запишите в векторной и координатной форме уравнения плоскости, проходящей через точку $M_0(x_0,y_0,z_0)$ перпендикулярно вектору $\overline{N} = \{A,B,C\}$.
- 115. Запишите общее уравнение плоскости. Охарактеризуйте его коэффициенты.
- 116. Запишите в векторной и координатной форме уравнения плоскости, проходящей через точку $M_0(x_0,y_0,z_0)$ с радиусом вектором $\overline{r_0}$ параллельно векторам $\overline{l_1}=\{m_1,n_1,p_1\}$ и $\overline{l_2}=\{m_2,n_2,p_2\}.$
- 117. Запишите формулу вычисления расстояния от точки $M_0(x_0,y_0,z_0)$ до плоскости Ax+By+Cz+D=0.
- 118. Как найти угол между двумя плоскостями $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_2z+D_2=0$?
- 119. Запишите параметрические и канонические уравнения прямой в пространстве.
- 120. Запишите общее уравнение прямой в пространстве.
- 121. Опишите процесс перехода от общих уравнений прямых в пространстве к каноническим и параметрическим.
- 122. Запишите в векторной форме формулу вычисления расстояния от точки до прямой в пространстве.
- 123. Запишите в векторной форме формулу для вычисления расстояния между двумя прямыми в пространстве.
- 124. Как охарактеризовать взаимное расположение двух прямых в пространстве?
- 125. Опишите понятие множества. Приведите примеры множеств. Поясните смысл утверждения: «Множество А задано». Какие способы задания множеств знаете.
- 126. Объясните, что означают следующие записи $a \in A$, $a \notin A$, $A \subseteq B$, $B \subseteq A$.
- 127. Какие два множества называются равными. Как можно доказать, что А=В.
- 128. Дайте определение объединения суммы двух множеств. Приведите примеры.
- 129. Дайте определение пересечения двух множеств. Приведите примеры.
- 130. Понятие разности двух множеств.
- 131. Понятие универсального множества. Понятие дополнения множеств.
- 132. Дайте определение действительного числа. Какие числа называются рациональными, иррациональными.
- 133. Дайте определение модуля действительного числа, укажите его свойства.
- 134. Запишите в виде неравенств множества действительных чисел: [a,b], (a,b), [a,b), (a,b].
- 135. В чем заключается свойство непрерывности, плотности и упорядоченности множества действительных чисел.
- 136. Символы $-\infty$, $+\infty$, ∞ . Запишите в виде неравенств множества $[a,+\infty)$, $(a,+\infty]$, $(-\infty,a]$, $(-\infty,a)$.
- 137. Операции с символами $-\infty$, $+\infty$, ∞ .
- 138. Понятие функции f: $x \subseteq R_n \rightarrow y \subseteq R_m$.
- 139. Понятие области определения и области значений функции.
- 140. Охарактеризуйте частные классы функций f: $x \subseteq R_n \rightarrow y \subseteq R_m$ при различных значениях m и n. Примеры таких классов.
- 141. Понятие графика функции.
- 142. Опишите класс основных элементарных функций. Укажите их область определения и область значений. Постройте график каждой из основных элементарных функций.
- 143. Дайте определение композиции функций.
- 144. Понятие обратной функции.
- 145. Виды окрестностей конечной точки x_0 на прямой, их обозначения и запись в виде неравенств.
- 146. Понятия односторонней окрестности точки x_0 на прямой. Их обозначения и запись в виде неравенств.

- 147. Понятия шаровых и параллелепипедальных окрестностей на плоскости и в пространстве.
- 148. Окрестности $-\infty$, $+\infty$, ∞ на прямой, их обозначение и запись в виде неравенств.
- 149. Понятие предельной точки, внутренней и граничной точки множества. Понятие границы множества, открытые и замкнутые множества.
- 150. Понятие числовой последовательности. Виды числовых последовательностей.
- 151. Понятие предела числовой последовательности.
- 152. Понятие векторной последовательности.
- 153. Сформулировать теорему о пределе векторной последовательности.
- 154. Сформулировать теорему о пределе монотонной ограниченной последовательности.
- 155. Дать определение предела функции на языке последовательностей.
- 156. Сформулировать и доказать теорему об единственности предела.
- 157. Сформулировать и доказать теорему об ограниченности функции, имеющей конечный предел.
- 158. Сформулировать и доказать теорему о пределе суммы, произведения и частного.
- 159. Сформулировать и доказать теорему о переходе к пределу в неравенстве $f(x) < \varphi(x) < \psi(x)$.
- 160. Сформулировать и доказать теорему о переходе к пределу в неравенстве $f(x) \le b$.
- 161. Сформулировать теорему о пределе при $M \to M_0$ функции $f: x \subseteq R^n \to y \subseteq R^m$.
- 162. Сформулировать теорему о связи пределов $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0 \to 0} f(x)$, $\lim_{x \to x_0 \to 0} f(x)$.
- 163. Сформулировать теорему о связи пределов $\lim_{x \to \infty} f(x)$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to \infty} f(x)$.
- 164. Сформулируйте различные определения непрерывности функции в точке x_0 .
- 165. Сформулировать и доказать теорему о непрерывности сложной функции.
- 166. Понятие непрерывности функции слева и справа.
- 167. Теорема о непрерывности суммы, произведения и частного функции.
- 168. Сформулировать теорему Коши о промежуточных значениях непрерывной на [a,b] функции.
- 169. Сформулируйте первую теорему Вейерштрасса об ограниченности непрерывной на [a,b] функции.
- 170. Как Вы понимаете слова: функция на [a,b] достигает своего наименьшего и наибольшего значений? Сформулируйте вторую теорему Вейерштрасса.
- 171. Запишите и докажите справедливость первого замечательного предела и некоторых его следствий.
- 172. Приведите различные формы записи второго замечательного предела. Докажите, что

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$
 существует.

- 173. Запишите следствия второго замечательного предела и докажите их.
- 174. Приведите классификацию разрывов функции: $f: x \subseteq R \rightarrow y \subseteq R$.
- 175. Понятие бесконечно малой и бесконечно большой функции. Примеры.
- 176. Сформулировать и доказать теорему о связи бесконечно малой и бесконечно большой функции.
- 177. Сформулировать и доказать теорему о произведении бесконечно малой и ограниченной функций.
- 178. Сформулировать и доказать теорему о разности функции и ее предела.
- 179. Дайте определение порядка малости бесконечно малой функции $\alpha(x)$ относительно $\beta(x)$.
- 180. Понятие эквивалентности двух бесконечно малых функций.
- 181. Понятие главной части бесконечно малой функции относительно другой бесконечно малой.
- 182. Сформулируйте и докажите свойства эквивалентных бесконечно малых.
- 183. Объясните, как можно применять понятие эквивалентных бесконечно малых при

отыскании пределов.

- 184. Как определяют бесконечно малые и бесконечно большие функции в случае f: $x \subset R_n \to y \subseteq R_m$?
- 185. Дайте определение дифференцируемой функции.
- 186. Сформулируйте теорему о связи дифференцируемости и непрерывности.
- 187. Понятие частных производных.
- 188. Таблица производных всех основных элементарных функций.
- 189. Сформулируйте правила дифференцирования суммы, произведения и частного.
- 190. Сформулируйте теорему о дифференцировании сложной функции.
- 191. Укажите формулу дифференцирования функции $U=f[x_1(t), x_2(t),...,x_n(t)]$.
- 192. Укажите правило дифференцирования функции $U=f[x_1(t_1, t_2, ..., t_n), x_2(t_1, t_2, ..., t_n), ..., x_n(t_1, t_2, ..., t_n)].$
- 193. Опишите правило дифференцирования обратных функций.
- 194. Понятие производной по направлению.
- 195. Запишите и докажите формулу вычисления производной по направлению. Понятие градиента.
- 196. Понятие производных высших порядков от f: $x \subset R \rightarrow y \subset R$.
- 197. Понятие частных производных высших порядков.
- 198. Сформулируйте теорему о равенстве смешанных частных производных.
- 199. Опишите правило дифференцирования параметрически заданных функций. Объясните параметрический способ задания функций.
- 200. Поясните неявный способ задания функций f: $x \subset R \rightarrow y \subset R$. Правило их дифференцирования.
- 201. Правило отыскания частных производных функций, заданных неявно.
- 202. Геометрический и механический смысл производной функции $f: x \subset R \rightarrow y \subset R$.
- 203. Записать уравнение касательной к кривой при различных способах ее задания.
- 204. Уравнение касательной плоскости и нормали к поверхности.
- 205. Как записать дифференциал для функции f: $x \subseteq R \rightarrow y \subseteq R$?
- 206. Как записать дифференциал для функции $f: x \subseteq R_n \rightarrow y \subseteq R$?
- 207. Как записать дифференциал для функции $f: x \subseteq R \rightarrow y \subseteq R_n$?
- 208. Как записать дифференциал для функции $f: x \subseteq R_n \rightarrow y \subseteq R_m$?
- 209. В чем заключается свойство инвариантности формы записи первого дифференциала?
- 210. Как определяются дифференциалы d^2f , d^3f ,..., d^nf ?
- 211. Записать общий вид дифференциалов d^2f , d^3f ,..., d^nf для функций f: $x \subset R \rightarrow y \subset R$, если x независимая переменная.
- 212. Записать выражение для $d^2 f$ функции y = f(x), если x = x(t).
- 213. Записать выражение для $d^2 f$ функции z = f(x,y).
- 214. Записать выражение для $d^3 f$ функции z = f(x,y).
- 215. Сформулируйте теорему о поведении функции f(x) в окрестности точки x_0 , если f'(x) > 0, (f'(x) < 0).
- 216. Сформулируйте теорему о дифференцируемости функции $f: x \subset R \to y \subset R$.
- 217. Сформулируйте теорему о дифференцируемости функции $f: x \subset R_n \to y \subset R$.
- 218. Сформулируйте правило Лопиталя раскрытия неопределенности $\frac{0}{0}$
- 219. Сформулируйте правило Лопиталя раскрытия неопределенности $\frac{\infty}{\infty}$
- 220. Как раскрыть неопределенность $0.\infty$, $\infty-\infty$?
- 221. Как раскрыть неопределенность 0^0 , 1^{∞} , ∞^0 ?
- 222. Дайте определение точек экстремума для функции y = f(x), $y = f(x_1, x_2, ..., x_n)$.
- 223. Сформулируйте и докажите необходимое условие экстремума для функций y = f(x) и $y = f(x_1, x_2, ..., x_n)$.
- 224. Сформулируйте и докажите достаточные условия экстремума для функций f(x), связанные со знаком f'(x).
- 225. Сформулируйте и докажите достаточные условия экстремума для функций f(x),

связанные со второй производной и производной порядка п.

- 226. Положительно и отрицательно определенные квадратичные формы. Сформулируйте критерий Сильвестра положительно и отрицательно определенной квадратичной формы.
- 227. Сформулируйте достаточные условия экстремума функций $f(x_1, x_2, \dots, x_n)$.
- 228. Опишите правило отыскания наибольшего и наименьшего значений функции на замкнутом множестве.
- 229. Понятие условного экстремума.
- 230. Какие знаете способы отыскания условного экстремума?
- 231. Дайте определение выпуклости вверх и вниз графика функции.
- 232. Сформулируйте необходимые и достаточные условия выпуклости вниз (вверх) графика функции, связанные со второй производной.
- 233. Понятие точки перегиба и правило их отыскания.
- 234. Понятие асимптоты графика функции.
- 235. Как найти вертикальные асимптоты?
- 236. Как найти горизонтальные асимптоты?
- 237. Как найти наклонные асимптоты?
- 238. Опишите схему исследования и построения графика функции.

- 1. Определение первообразной.
- 2. Докажите, что любые две первообразные одной и той же функции отличаются только лишь на константу.
- 3. Понятие неопределённого интеграла.
- 4. Свойства неопределённого интеграла.
- 5. Функции какого класса имеют первообразные?
- 6. Что означают слова "неберущийся интеграл"?
- 7. Таблица интегралов.
- 8. Простейшие методы интегрирования: непосредственное интегрирование, метод подведения под знак дифференциала.
- 9. Формула интегрирования по частям.
- 10. Замена переменных в неопределённом интеграле.
- 11. Отыскание интегралов типа $\int \cos \alpha x \cos \beta x dx$, $\int \cos \alpha x \sin \beta x dx$, $\int \sin \alpha x \sin \beta x dx$. 12. Отыскание интегралов $\int \frac{Mz+N}{z^2+pz+q} dz$, $\int \frac{Mz+N}{\sqrt{z^2+pz+q}} dz$
- 13. Какая функция называется дробной рациональной. Дайте определение правильной и неправильной рациональной дроби.
- 14. Какие рациональные дроби называются элементарными. Методы их интегрирования.
- 15. Как представить рациональную дробь в виде суммы элементарных.
- 16. Правила интегрирования выражений $[\sin^m x \cos^n x dx, m \ u \ n \ целые положительные числа.]$ Интегралы типа $\int R(\sin x, \cos x) dx$.
- 17. Интегралы типа $\int R(x, \sqrt[r]{x}, \sqrt[r]{x}, ..., \sqrt[r]{x}) dx$, r_i целые положительные числа. Интегралы типа

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1/q_1}, \left(\frac{ax+b}{cx+d}\right)^{p_2/q_2}, \dots, \left(\frac{ax+b}{cx+d}\right)^{p_n/q_n}\right) dx$$

- 18. Интегралы, содержащие $\sqrt{a^2-x^2}$, $\sqrt{x^2+a^2}$, $\sqrt{x^2-a^2}$.
- 19. Построение интегральной суммы.
- 20. Понятие определённого интеграла.
- 21. Какие функции интегрируемы по Риману?
- 22. Свойства определённого интеграла, выраженные равенствами.
- 23. Свойства определённого интеграла, выраженные неравенствами.
- 24. Теоремы о среднем (свойства определённого интеграла).

- 25. Интеграл с переменным верхним пределом. Свойства функции $I(x) = \int_{a}^{x} f(t) dt$.
- 26. Формула Ньютона-Лейбница.
- 27. Формула интегрирования по частям для определённого интеграла.
- 28. Замена переменных в определённом интеграле.
- 29. Геометрический смысл определённого интеграла.
- 30. Вычисление площадей в декартовых координатах.
- 31. Вычисление площадей в полярных координатах.
- 32. Вычисление длины дуги кривой в декартовых координатах.
- 33. Вычисление длины дуги кривой в полярных координатах.
- 34. Определение несобственных интегралов первого рода на промежутках $[a,+\infty)$, $(-\infty,b]$.
- 35. Определение несобственного интеграла первого рода на промежутке $(-\infty, +\infty)$, его сходимость.
- 36. Исследование интеграла $\int_{a}^{+\infty} \frac{dx}{x^{\alpha}}$.
- 37. Признак сравнения в конечной форме для несобственных интегралов первого рода.
- 38. Признак сравнения в предельной форме для несобственных интегралов первого рода.
- 39. Условная и абсолютная сходимость несобственных интегралов первого рода. Признак Дирихле.
- 40. Исследование интеграла $\int_{1}^{+\infty} \frac{\sin x \, dx}{x}$ на сходимость.
- 41. Определение несобственного интеграла второго рода. Три возможных случая расположения особой точки.
- 42. Исследование интегралов $\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}}$, $\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}}$, $\int_{0}^{1} \frac{dx}{x^{\alpha}}$.
- 43. Признак сравнения в конечной форме для несобственных интегралов второго рода.
- 44. Признак сравнения в предельной форме для несобственных интегралов второго рода.
- 45. Связь между несобственными интегралами первого и второго рода.
- 46. Как решается вопрос о сходимости несобственного интеграла без его вычисления?
- 47. Построение интегральной суммы.
- 48. Ориентированные кривые и поверхности.
- 49. Вычисление двойного интеграла в декартовых координатах.
- 50. Геометрический смысл двойного интеграла.
- 51. Замена переменных в двойном интеграле. Двойной интеграл в полярных координатах.
- 52. Тройной интеграл в декартовых координатах.
- 53. Геометрический смысл тройного интеграла.
- 54. Замена переменных в тройном интеграле. Цилиндрическая система координат.
- 55. Замена переменных в тройном интеграле. Сферическая система координат.
- 56. Вычисление криволинейных интегралов первого рода.
- 57. Вычисление криволинейных интегралов второго рода.
- 58. Понятие векторного поля. Векторные линии.
- 59. Работа векторного поля вдоль кривой. Циркуляция векторного поля. Ротор векторного поля.
- 60. Теоремы об условиях независимости криволинейных интегралов от пути интегрирования.
- 61. Потенциальные поля. Отыскание потенциала поля.
- 62. Формула для вычисления площади поверхности.
- 63. Вычислительные формулы для поверхностного интеграла первого рода.
- 64. Вычислительные формулы для поверхностного интеграла второго рода.
- 65. Поток векторного поля через поверхность. Дивергенция векторного поля.
- 66. Интегральные формулы: Грина, Стокса, Остроградского-Гаусса. Векторная форма записи формул Стокса и Остроградского-Гаусса.
- 67. Понятие обыкновенного дифференциального уравнения первого порядка и его решения.
- 68. Формы записи обыкновенного дифференциального уравнения первого порядка.

- 69. Геометрическая интерпретация обыкновенного дифференциального уравнения первого порядка.
- 70. Постановка задачи Коши для уравнения y' = f(x, y).
- 71. Формулировка теоремы существования и единственности решения задачи Коши для уравнения y' = f(x, y).
- 72. Понятие общего, частного и особого решений обыкновенного дифференциального уравнения первого порядка.
- 73. Уравнения с разделяющимися переменными.
- 74. Однородные уравнения.
- 75. Уравнения в полных дифференциалах. Необходимый и достаточный признак уравнения в полных дифференциалах.
- 76. Запишите формулы, позволяющие восстановить функцию по её известному полному дифференциалу.
- 77. Линейные уравнения первого порядка.
- 78. Уравнения Бернулли.
- 79. Постановка задачи Коши для дифференциального уравнения порядка n.
- 80. Понятие общего и частного решений для дифференциального уравнения порядка n.
- 81. Формулировка теоремы существования и единственности для дифференциального уравнения порядка n.
- 82. Уравнения высших порядков, допускающие понижение порядка.
- 83. Общий вид неоднородных и однородных линейных дифференциальных уравнений порядка n.
- 84. Дифференциальный линейный оператор.
- 85. Свойства решений линейного однородного дифференциального уравнения.
- 86. Доказать, что множество всех решений линейного однородного дифференциального уравнения образует *n*-мерное линейное пространство.
- 87. Линейно зависимые и линейно независимые системы функций. Примеры.
- 88. Определитель Вронского.
- 89. Теорема о линейной зависимости систем функций.
- 90. Теорема об условиях линейной независимости решений линейного однородного дифференциального уравнения.
- 91. Понятие фундаментальной системы решений линейного однородного дифференциального уравнения.
- 92. Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- 93. Отыскание фундаментальной системы и общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами.
- 94. Теорема о структуре общего решения неоднородного линейного уравнения порядка *n*.
- 95. Метод вариации произвольных постоянных для неоднородного линейного уравнения порядка n.
- 96. Подбор частных решений линейного неоднородного уравнения с правой частью специального вида.
- 97. Системы обыкновенных дифференциальных уравнений. Понятие решения системы. Связь систем высших порядков, систем первого порядка и дифференциальных уравнений порядка n.
- 98. Системы линейных дифференциальных уравнений. Матричная форма записи систем линейных дифференциальных уравнений. Структура общего решения системы линейных однородных уравнений.
- 99. Отыскание фундаментальной системы решений системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.
- 100. Метод вариации произвольных постоянных для систем дифференциальных уравнений.

- 1. Как вводится операция сложения и умножения комплексных чисел.
- 2. Изображение комплексных чисел на плоскости. Сопряженные комплексные числа.
- 3. Дайте определение модуля и аргумента комплексного числа.
- 4. Тригонометрическая форма записи комплексного числа.
- 5. Главное значение аргумента комплексного числа.
- 6. Как выражается arg(z) через функции arctg(x).
- 7. Сформулируйте теорему об умножение и делении комплексных чисел, записанных в тригонометрической форме.
- 8. Дайте определение $\sqrt[n]{z}$.
- 9. Запишите формулу для отыскания $\sqrt[\eta]{z}$.
- 10. Дайте определение последовательности комплексных чисел. Приведите примеры.
- 11. Дайте определение предела последовательности комплексных чисел.
- 12. Сформулируйте теорему о пределе последовательности $\{z_n\} = \{x_n + y_n + i\}$.
- 13. Опишите, как вводится символ ∞ на комплексной плоскости.
- 14. Как вводится операция e^z для комплексных значений z.
- 15. Показательная форма записи комплексного числа z.
- 16. Дать определение логарифма комплексного числа.
- 17. Запишите все значения логарифма комплексного числа.
- 18. Главные значения логарифма.
- 19. Как вводятся операции sin z, cos z, tg z, ctg z, sh z, ch z для комплексных z.
- 20. Дайте определение функции комплексного числа z.
- 21. Покажите, что задание функции f(z) сводится к заданию двух функций U(x,y), V(x,y) на каком-нибудь примере.
- 22. Дайте определение предела функции f(z) при $z \rightarrow z_0$.
- 23. Сформулируйте теорему о пределе функции f(z)=U(x,y)+iV(x,y) при $z=x+iy \rightarrow z_0=x_0+iy_0$.
- 24. Сформулируйте теорему о пределе функции $W = \rho(r, \phi)e^{i\cdot \theta(r, \phi)}$
- 25. Дайте определение непрерывной функции W=f(z) в точке z_0 .
- 26. Охарактеризуйте линейное отображение f(z)=az+b.
- 27. Сформулируйте теорему о непрерывности функции f(z)=U(x,y)+iV(x,y) в точке $z_0=x_0+iy_0$.
- 28. Дайте определение производной от функции f(z).
- 29. Дайте определение дифференцируемой функции f(z).
- 30. Сформулируйте теорему о связи дифференцируемости и существовании f'(z).
- 31. Сформулируйте теорему о необходимых и достаточных условиях дифференцируемости функции f(z)=U(x,y)+iV(x,y) в точке $z_0=x_0+iy_0$. Условия Коши-Римана.
- 32. Дайте определение аналитической функции в точке z₀ и области D.
- 33. Опишите некоторые свойства аналитической функции.
- 34. Какая функция U(x,y) называется гармонической?
- 35. Запишите формулы, позволяющие восстановить аналитическую функцию по её действительной или мнимой части.
- 36. Как строится интегральная сумма Римана от функции f(z) по кривой L.
- 37. Дайте определение интеграла Римана от функции f(z) по кривой L.
- 38. Сформулируйте свойства $\int f(z)dz$.
- 39. Запишите вычислительные формулы для $\int_{a}^{b} f(z) dz$.
- 40. Сформулируйте теорему Коши для интеграла по замкнутому контуру от аналитической функции.
- 41. Сформулируйте теорему о существовании первообразной для аналитической функции. Общий вид первообразной.
- 42. Теорема об условиях справедливости формулы Ньютона Лейбница.
- 43. Сформулируйте теорему Коши для многосвязной области.
- 44. Сформулируйте теорему об условиях справедливости интегральной формулы Коши.

- 45. Понятие интеграла типа Коши.
- 46. Сформулируйте теорему об условиях справедливости интегральной формулы для $f^{(n)}(z)$.
- 47. Дайте определение числового ряда.
- 48. Дайте определение частичных сумм s_n числового ряда.
- 49. Дать определение понятия суммы числового ряда.
- 50. Дать определение сходящегося и расходящегося числового ряда.
- 51. Приведите примеры сходящихся и расходящихся числовых рядов.
- 52. Охарактеризуйте ряд $\sum_{n=1}^{\infty} \frac{1}{n^s}$. Укажите условия его сходимости и расходимости.
- 53. Дан ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \alpha \cdot n + i \cdot \sum_{n=1}^{\infty} \beta_n$. Сформулируйте необходимое и достаточное условие сходимости ряда, связанное с поведением его мнимой и действительной частью.
- 54. Сформулируйте критерий Коши о необходимости и достаточности условий сходимости числового ряда.
- 55. Сформулируйте необходимое условие сходимости числового ряда.
- 56. Сформулируйте достаточное условие расходимости числового ряда.
- 57. Понятие остатка ряда. Поведение остатка сходящихся и расходящихся рядов.
- 58. Сформулируйте свойства о поведении линейной комбинации сходящихся рядов.
- 59. Дайте определение условной и абсолютной сходимости.
- 60. Сформулируйте признак сравнения в конечной форме.
- 61. Сформулируйте признак сравнения в предельной форме.
- 62. Сформулируйте признак Даламбера в конечной форме.
- 63. Сформулируйте признак Даламбера в предельной форме.
- 64. Сформулируйте признак Коши в конечной форме.
- 65. Сформулируйте признак Коши в предельной форме.
- 66. Интегральный признак Коши.
- 67. Дайте определение знакочередующегося ряда и сформулируйте теорему Лейбница о его сходимости.
- 68. Понятие функционального ряда и его области сходимости.
- 69. Понятие суммы функционального ряда.
- 70. Дать определение равномерной и неравномерной сходимости функционального ряда.
- 71. Сформулируйте признак Вейерштрасса для равномерной сходимости функционального ряда.
- 72. Сформулируйте теорему о предельном переходе под знаком суммы.
- 73. Сформулируйте теорему о непрерывности суммы функционального ряда.
- 74. Как вы понимаете слова: «Ряд можно интегрировать почленно».
- 75. Сформулируйте теорему о почленном интегрировании функционального ряда.
- 76. Как вы понимаете слова: «Ряд можно дифференцировать почленно».
- 77. Сформулируйте теорему об аналитичности суммы ряда.
- 78. Сформулируйте теорему о почленном дифференцировании рядов для действительного случая.
- 79. Понятие степенного ряда.
- 80. Сформулируйте теорему Абеля о строении области сходимости степенного ряда.
- 81. Теорема о разложении аналитической функции в ряд Тейлора.
- 82. Знать вид ряда Тейлора для функции e^z , sin(z), cos(z), ch(z), sh(s), ln(1+z), arctg(z), $(1+z)^{\alpha}$.
- 83. При решении каких задач применяются ряды Тейлора?
- 84. Понятие ряда Лорана. Как устроена область сходимости ряда Лорана?
- 85. Сформулируйте теорему о разложимости функции в ряд Лорана.
- 86. Понятие окрестности точки ∞ . Ряд Лорана функции f(z) в окрестности ∞ .
- 87. Понятие нуля аналитической функции и его кратности.
- 88. Сформулируйте теорему о поведении ряда Тейлора в окрестности т-кратного нуля.
- 89. Как практически найти кратность нуля?

- 90. Сформулируйте теорему об изолированности нулей.
- 91. Сформулируйте теорему об обращении функции в тождественный нуль.
- 92. Сформулируйте теорему единственности аналитической функции.
- 93. Дайте определение особой точки z_0 аналитической функции и приведите их классификацию.
- 94. Сформулируйте теорему о поведения ряда Лорана в окрестности устранимой особой точки z_0 .
- 95. Сформулируйте теорему о связи между нулями и полюсами.
- 96. Дать определение т-кратного полюса.
- 97. Сформулируйте теорему о представимости функции в окрестности m-кратного полюса.
- 98. Сформулируйте теорему о поведении ряда Лорана в окрестности т-кратного полюса.
- 99. Сформулируйте теорему о поведении ряда Лорана функции f(z) в окрестности существенно особой точки.
- 100. Дать классификацию точки ∞
- 101. Сформулируйте теорему о поведении ряда Лорана функции f(z) в окрестности ∞ .
- 102. Дать определение вычета.
- 103. Сформулируйте теорему о связи вычета с коэффициентами ряда Лорана.
- 104. Запишите формулу вычисления вычета относительно простого полюса (две формулы).
- 105. Запишите формулу вычисления вычета относительно т-кратного полюса.
- 106. Дайте определение вычета в ∞.
- 107. Укажите способы вычисления вычета в ∞ .
- 108. Сформулируйте теорему о вычетах с учётом точки ∞ .
- 109. Сформулируйте теорему о вычетах без учёта точки ∞ .
- 110. Как применяются вычеты для вычислений интегралов по замкнутому контуру?
- 111. Сформулируйте лемму Жордана.
- 112. Дать определение оригинала.
- 113. Дать определение изображения (по Лапласу).
- 114. Сформулируйте теорему об аналитичности изображений.
- 115. Свойство линейности преобразования Лапласа.
- 116. Сформулируйте теорему подобия.
- 117. Сформулируйте теорему запаздывания.
- 118. Сформулируйте теорему смещения.
- 119. Сформулируйте правило дифференцирования оригинала.
- 120. Сформулируйте правило дифференцирования изображения.
- 121. Сформулируйте правило интегрирования оригинала в пределах от 0 до t.
- 122. Сформулируйте правило интегрирования изображения в пределах от P до ∞ .
- 123. Дайте определение свёртки двух функций.
- 124. Сформулируйте теорему об изображении свёртки.
- 125. Запишите формулу Дюамеля.
- 126. Сформулируйте теорему обращения (восстановлению функции по её изображению).
- 127. Какие знаете способы отыскания оригинала по его изображению.
- 128. Опишите общую схему решения задач операторным способом.
- 129. Решение линейных уравнений с постоянными коэффициентами операторным методом.
- 130. Применение формулы Дюамеля для интегрирования линейных дифференциальных уравнений с постоянными коэффициентами.
- 131. Приведите примеры классов функций, образующих линейное пространство.
- 132. Дать определение понятия базиса для бесконечномерного линейного пространства.
- 133. Дать определение понятия скалярного произведения двух функций.
- 134. Дать определение нормы функции.
- 135. Дать определение ортогональной системе функций.
- 136. Приведите примеры ортогональных систем функций.

- 137. Запишите основную тригонометрическую систему функций. Укажите норму этих функций
- 138. Как найти коэффициенты ряда Фурье по произвольной системе функций.
- 139. Что называется среднеквадратичным отклонением функции f(x) от функции g(x)?
- 140. Дайте определение сходимости последовательности $\{S_n(x)\}$ к функции S(x) в среднеквадратичном смысле.
- 141. В чём заключается экстремальное свойство многочленов Фурье.
- 142. Запишите неравенство Бесселя.
- 143. Опишите общий вид ряда Фурье по основной тригонометрической системе.
- 144. Запишите формулу для отыскания коэффициентов тригонометрического ряда Фурье.
- 145. Сформулируйте теорему Дирихле о представимости функции тригонометрическим рядом Фурье.
- 146. Вид коэффициентов тригонометрического ряда Фурье для чётных и нечётных функций.
- 147. Как разложить в ряд Фурье функции, заданные на $[0, \ell]$ и $[a, a + 2\ell]$?
- 148. Запишите вид ряда Фурье по гармоническим колебаниям.
- 149. Понятие об амплитудном, частотном, фазовом спектрах периодической функции.
- 150. Укажите систему функции для записи ряда Фурье в комплексной форме.
- 151. Запишите ряд Фурье в комплексной форме. Как выражаются его коэффициенты?
- 152. Сформулируйте теорему о представимости функции интегралом Фурье.
- 153. Запишите интеграл Фурье в действительной форме (3 формы).
- 154. Для чего функцию разлагают в ряд Фурье?
- 155. Для чего функцию представляют интегралом Фурье?
- 156. Понятие интегрального преобразования Фурье.
- 157. Понятие синус преобразование Фурье.
- 158. Понятие косинус преобразование Фурье.
- 159.Дайте определение детерминированных и статических закономерностей. Приведите примеры.
- 160. Что изучает теория вероятностей?
- 161. Понятие о пространстве элементарных событий. Приведите примеры.
- 162. Понятие события и поля событий. Примеры.
- 163. Классификация событий: достоверные, невозможные, совместные и несовместные события.
- 164. Операции над событиями: сумма, произведение, отрицание. Примеры.
- 165. В каких случаях применимо классическое определение вероятности. Как устроено в этом случае пространство элементарных событий?
- 166. Геометрическое определение вероятностей.
- 167. Статистическое определение вероятностей.
- 168. Аксиоматическое определение вероятностей.
- 169. Понятие условной вероятности. Примеры.
- 170. Установите связь между условными и безусловными вероятностями для случая геометрического определения вероятностей.
- 171. Зависимые и независимые события. Примеры.
- 172. Формула умножения вероятностей.
- 173. Получите формулу сложения вероятностей для случая геометрического определения вероятностей.
- 174. Сформулируйте задачу, которую решает формула полной вероятности. Получите эту формулу.
- 175. Сформулируйте задачу, которую решает формула Байеса. Получите эту формулу.
- 176. Опишите схему испытаний Бернулли.
- 177. Математическая модель схемы испытаний Бернулли.
- 178. Какую задачу решает формула Бернулли?
- 179. Сформулируйте локальную теорему Муавра-Лапласа. Для решения каких задач её применяют?

- 180. Сформулируйте интегральную теорему Муавра-Лапласа. Для решения каких задач её применяют?
- 181. Редкие события. Формула Пуассона.
- 182. Опишите пуассоновский поток событий.
- 183. Понятие случайной величины. Одномерные и многомерные случайные величины. Примеры. Какие случайные величины называются независимыми, зависимыми?
- 184. Дискретные одномерные случайные величины. Понятие ряда распределения.
- 185. Функция распределения вероятностей одномерной случайной величины и ее свойства.
- 186. Построение функции распределения для дискретных одномерных величин.
- 187. Запишите формулу вычисления $P(a \le x \le b)$, зная F(x).
- 188. Плотность распределения вероятностей одномерной случайной величины и ее свойства.
- 189. Запишите формулу для вычисления P(a < x < b), зная плотность распределения p(x).
- 190. Понятие математического ожидания одномерной дискретной случайной величины, его смысл.
- 191. Формула для вычисления математического ожидания для непрерывной одномерной случайной величины.
- 192. Понятие функции случайного аргумента. Получите формулу вычисления математического ожидания функции одного случайного аргумента.
- 193. Свойства математического ожидания.
- 194. Понятие дисперсии случайной величины.
- 195. Вычислительная формула дисперсии.
- 196. Свойства дисперсии.
- 197. Понятие о моде, медиане и квантили порядка р.
- 198. Моменты случайной величины.
- 199. Равномерное распределение случайной величины. Запишите для равномерного распределения функцию распределения, плотность, m_x , D_x .
- 200. Показательное распределение. Запишите плотность распределения, тах, Dх.
- 201. Нормальное распределение. Охарактеризуйте его параметры.
- 202. Постройте график нормального распределения.
- 203. Приведите правило вычисления $P(\alpha < x < \beta)$ для нормальной величины.
- 204. Приведите правило вычисления $P(|x-a| < \delta)$ для нормальной величины.
- 205. Правило «трёх сигм».
- 206. Пусть X и Y независимые нормальные случайные величины. Докажите, что величина Z=X+Y также нормальна. Найдите M[Z] и D[Z].
- 207. Понятие о центральных предельных теоремах Ляпунова. Сформулируйте теорему Ляпунова для одинаково распределенных случайных величин.
- 208. Неравенство Чебышева.
- 209. Дать определение понятия сходимости по вероятности.
- 210. Сформулировать и доказать теорему о сходимости по вероятности последовательности $Y_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$.
- 211. Сформулируйте и докажите следствие из теоремы Чебышева о сходимости по вероятности последовательности $Y_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$, когда величины
 - x_1, x_2, \dots, x_n распределены по одному закону.
- 212. Сформулировать и доказать теорему Бернулли о сходимости по вероятности относительной частоты события к вероятности события в схеме с испытаниями Бернулли.
- 213. Сформулируйте и докажите теорему Пуассона о сходимости по вероятности относительно частоты наступления события к среднему арифметическому вероятностей этих событий.

- 214. Как строится матрица распределения двумерной дискретной случайной величины?
- 215. Как найти ряды распределения случайной величины X и Y, зная матрицу распределения системы (X,Y) дискретных величин?
- 216. Дать определение функции распределения системы.
- 217. Запишите предельные значения функции распределения F(x,y) при $x \to -\infty, x \to +\infty, y \to -\infty, y \to +\infty$.
- 218. Запишите формулу для вычисления $P(x_1 < X < x_2, y_1 < Y < y_2)$, зная функцию распределения F(x,y).
- 219. Докажите теорему о функции распределения для независимых случайных величин.
- 220. Понятие об условных функциях распределения. Правило умножения законов распределения.
- 221. Понятие плотности распределения системы.
- 222. Как, зная плотность распределения системы p(x,y), найти $P((x,y) \in D)$?
- 223. Как найти функцию распределения системы F(x,y), зная плотность распределения p(x,y)?
- 224. Как найти функции распределения $F_1(x)$ и $F_2(y)$, зная плотность распределения $\rho(x,y)$ системы (X,Y)?
- 225. Как найти плотность распределения $p_1(x)$ и $p_2(y)$, зная плотность распределения $\rho(x,y)$ системы (X,Y)?
- 226. Плотность распределения системы для независимых случайных величин.
- 227. Понятие условных плотностей распределения. Правило умножения плотностей распределения.
- 228. Как, зная плотность распределения системы $\rho(x,y)$, найти плотность распределения случайной величины $Z=\phi(X,Y)$?
- 229. Получите формулы для вычисления математического ожидания величины $Z=\phi(X,Y)$ в дискретном и непрерывном случаях.
- 230. Понятие об условных математических ожиданиях и о кривых регрессии.
- 231. Понятие о ковариации и коэффициенте корреляции для независимых случайных величин.
- 232. Сформулируйте и докажите теорему о $M[\alpha X + \beta Y]$.
- 233. Сформулируйте и докажите теорему о $M[X \cdot Y]$.
- 234. Сформулируйте и докажите теорему о D[X+Y].
- 235. Запишите выражение для $D[\alpha X + \beta Y]$.
- 236. Докажите теорему о коэффициенте корреляции величины X и Y=ax+b.
- 237. Понятие о линейной среднеквадратичной регрессии g(x) величины Y на X. Запишите вид функции g(x).
- 238. Двумерное нормальное распределение. Охарактеризуйте его параметры.
- 239. Канонический вид двумерного нормального распределения.
- 240. Понятие выборки
- 241. Способы обработки выборки.
- 242. Эмпирическая функция распределения и ее свойства.
- 243. Выборочные числовые характеристики величины X.
- 244. Понятие оценки параметров распределения.
- 245. Требования к качеству оценки параметров распределения.
- 246. Метод максимума правдоподобия получения оценок.
- 247. Метод моментов Пирсона получения оценок.
- 248. Получите оценки параметров нормального распределении методом максимума правдоподобия я.
- 249. Проверьте оценки параметров нормального распределения полученных методом максимума правдоподобия на несмещенность и на эффективность.
- 250. Понятие о доверительных интервалах.
- 251. Построение доверительного интервала для m_x нормального распределения при известном σ .
- 252. Построение доверительного интервала оценки там нормального распределения при

неизвестном σ.

- 253. Построение доверительного интервала для оценки параметра σ нормального распределения.
- 254. Понятие о статистических гипотезах. Построение критических областей.

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

 методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе согласно пункта 12 рабочей программы:

12. Учебно-методическое и информационное обеспечение дисциплины:

12.1 Основная литература

- 1. Магазинникова А.Л., Магазинников Л.И. Линейная алгебра. Аналитическая геометрия: учебное пособие. Томск: ТУСУР, 2010. 176 с. http://edu.tusur.ru/training/publications/2244 (дата обращения 19.01.2017)
- 2. Магазинников Л.И., Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования: учебное пособие. Томск: ТУСУР, 2012. 206 с. https://edu.tusur.ru/publications/2258 (дата обращения 19.01.2017)
- 3. Магазинников Л.И., Магазинников А.Л. Дифференциальное исчисление: учебное пособие. Томск: ТУСУР, 2007. 191 с. http://edu.tusur.ru/training/publications/2246 (дата обращения 19.01.2017)
- 4. Ельцов А.А. Ельцова Т.А. Интегральное исчисление: учебное пособие. Томск: Эль-Контент, 2013. 138с. https://edu.tusur.ru/training/publications/6063 (дата обращения 19.01.2017)
- 5. Ельцов А.А. Ельцова Т.А. Дифференциальные уравнения: учебное пособие. Томск: Эль-Контент, 2013. - 104с. https://edu.tusur.ru/training/publications/6062 (дата обращения 19.01.2017)

12.2. Дополнительная литература

- 1. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры: учебник. СПб.: Лань, 2015. 445 с. http://e.lanbook.com/books/element.php?pl1_id=58162 (дата обращения 19.01.2017)
- 2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 1: учебник. СПб.: Лань, 2016. 608 с. http://e.lanbook.com/books/element.php?pl1_id=71768 (дата обращения 19.01.2017)
- 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 2: учебник. СПб.: Лань, 2016. 800 с. http://e.lanbook.com/books/element.php?pl1_id=71769 (дата обращения 19.01.2017)
- 4. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. В 3-х тт. Том 3: учебник. СПб.: Лань, 2009. 657 с. http://e.lanbook.com/books/element.php?pl1_id=409 (дата обрашения 19.01.2017)
- 5. Демидович Б.П., Моденов В.П. Дифференциальные уравнения: учебное пособие. СПб.: Лань, 2008. 277 с. http://e.lanbook.com/books/element.php?pl1_id=126 (дата обращения 19.01.2017)
- 6. Петрушко И.М. Курс высшей математики. Теория функций комплексной переменной: учебное пособие. СПб.: Лань, 2010. 364 с. http://e.lanbook.com/books/element.php?pl1_id=526 (дата обращения 19.01.2017)

12.3. Учебно-методические пособия и программное обеспечение

12.3.1 Обязательные учебно-методические пособия

Практические занятия проводятся по учебным пособиям:

- 1. Магазинников Л.И. Магазинникова А.Л. Высшая математика І. Практикум по линейной алгебре и аналитической геометрии: Учебное пособие. Томск: ТУСУР, 2007. 163 с. (97 экз.) http://edu.tusur.ru/publications/37 (дата обращения 19.01.2017)
- 2. Магазинников Л.И. Магазинников А.Л. Высшая математика І. Практикум по дифференциальному исчислению: Учебное пособие Томск: ТУСУР, 2007. 212 с. Экземпляров в библиотеке ТУСУРа: 99.
- 3. Ельцов А.А. Ельцова Т.А. Интегральное исчисление: учебное пособие. Томск: Эль-Контент, 2013. 138с. https://edu.tusur.ru/training/publications/6063 (дата обращения 19.01.2017)
- 4. Ельцов А.А. Ельцова Т.А. Дифференциальные уравнения: учебное пособие . Томск: Эль-Контент, 2013. 104с. https://edu.tusur.ru/training/publications/6062 (дата обращения 19.01.2017)
- 5. Магазинников Л.И., Высшая математика III. Функции комплексного переменного. Ряды. Интегральные преобразования: учебное пособие. Томск: ТУСУР, 2012. 206 с. https://edu.tusur.ru/publications/2258 (дата обращения 19.01.2017)

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

- 6. Магазинникова А.Л., Магазинников Л.И. Линейная алгебра. Аналитическая геометрия: учебное пособие. Томск: ТУСУР, 2010. 176 с. http://edu.tusur.ru/training/publications/2244 (дата обращения 19.01.2017)
- 7. Магазинников Л.И., Магазинников А.Л. Дифференциальное исчисление: учебное пособие. Томск: ТУСУР, 2007. 191 с. http://edu.tusur.ru/training/publications/2246 (дата обращения 19.01.2017)

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- * в форме электронного документа;
- * в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- * в форме электронного документа;
- * в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- * в форме электронного документа;
- * в печатной форме.

12.4 Программное обеспечение. Системы программирования Mathcad, Matlab, Maple, Mathematica, MathematicaPlayer, Adobe Acrobat Reader 9, PDF-XChange Viewer. Система дистанционного образования MOODLE для сопровождения самостоятельной работы студентов (методические материалы: текстовые, аудио и видеофайлы, демонстрации, индивидуальные задания и т.д.).