МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ное бюджетное образовательное учреждение UNIVERSITY исшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕІ Документ подписан электронной подписью И РАДИОЭЛЕКТРОНИК Владелец: Троян Павел Ефимович

Действителен: с 19.01.2016 по 16.09.2019

УТВЕРЖДАЮ

Пр	оректор по	учебной работе Троян П.Е.
«	»	2016 1

Рабочая программа учебной дисциплины

СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Уровень основной образовательной программы: бакалавриат Направление подготовки: 09.03.04 «Программная инженерия»

Форма обучения: очная

Факультет систем управления (ФСУ)

Кафедра автоматизации обработки информации (АОИ)

Курс 4 Семестр 7

Учебный план набора 2013 г.

Распределение рабочего времени:

Виды учебной работы	Семестр 7	Всего	Единицы	
1. Лекции	18	18	час	
2. Практические занятия	36	36	час	
3. Лабораторные занятия	не предусмотрено			
4. Курсовой проект/работа (КРС) (аудиторная)	не предусмотрено			
5. Всего аудиторных занятий (сумма 1, 3)	54	54	час	
6. Из них в интерактивной форме	не пр	редусм	отрено	
7. Самостоятельная работа студентов (СРС)	54	54	час	
8. Всего без экзамена (Сумма 5,7)	108	108	час	
9. Самост. работа на подготовку, сдачу экзамена	не предусмотрено			
10. Общая трудоемкость (сумма 8, 9)	108	108	час	
(в зачетных единицах)	3	3	3ET	

Зачет — 7 (седьмой) семестр

Томск 2016

Лист согласований

Рабочая программа для дисцип составлена с учетом требований высшего образования (ФГОС ВО) рия» (уровень бакалавриата), утвержарта 2015 г. г. № 229.	по направлению подготовки 09.03.	бразовательного стандарта 04 «Программная инжене-
1	а заседании кафедры «»	2016 г., протокол
<u>№</u>		
Разработчик:		
Профессор	Замятин Н.В.	
Рабочая программа согласована направления подготовки (специальн	с факультетом, профилирующей и г ости).	выпускающей кафедрами
Декан ФСУ	Сенченко П.В.	
Зав. профилирующей выпускающей кафедрой	Ехлаков Ю.П	
Кафедра АОИ, методист	Коновалова Н	I.B.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель дисциплины — изучение теоретических основ построения систем искусственного интеллекта как совокупности формализованных знаний об определенной предметной области, представленных в виде фактов, правил, фреймов, онтологий, семантических сетей.

Для достижения перечисленных целей при изучении дисциплины ставятся следующие задачи:

- развитие у студентов системного видения организации систем искусственного интеллекта;
- формирование навыков выявления и представления систем искусственного интеллекта;
- выработка практических навыков разработки систем искусственного интеллекта.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Системы искусственного интеллекта» (Б1.В.ОД.21) относится к обязательным дисциплинам вариативной части структуры ОПОП. Для овладения дисциплиной необходимы знания по следующим дисциплинам «Теория систем и системный анализ», «Теория автоматов и формальных языков», «Проектирование и архитектура программных систем».

Знания, полученные при изучении дисциплины, будут необходимы при выполнении выпускной квалификационной работы.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование **профессиональной компетенции: ПК-12** – способность к формализации в своей предметной области с учетом ограничений используемых методов исследования. В результате изучения дисциплины **студент должен:**

знать:

- методы описания различных предметных областей;
- основные методы представления знаний;
- теорию технологий искусственного интеллекта;
- принципы построения систем искусственного интеллекта;
- уровни представления языковой и предметной информации в интеллектуальных ИС;
- принципы организации подсистем обработки естественного языка для различных прикладных задач;
- архитектуры систем искусственного интеллекта;
- тенденции развития интеллектуальных информационных технологий;

уметь:

- представлять предметную область и устанавливать взаимосвязи между понятиями;
- классифицировать виды знаний;
- проводить сравнительную оценку различных архитектур систем искусственного интеллекта;
- применять полученные теоретические знания к различным предметным областям;
- работать с современными системами искусственного интеллекта;

владеть:

- методами формального описания конкретной предметной области;
- методами построения моделей и правил вывода на знаниях;
- анализом различных моделей представления знаний для систем искусственного интеллекта;
- реализацией моделей представления знаний на языках логического и функционального программирования;

иметь представление:

- о методах описания знаний и возможностях систем искусственного интеллекта;
- об инженерии знаний как научном направлении.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Вид учебной работы	Всего часов	Семестр 7
Аудиторные занятия (всего), в том числе	54	54
Лекции	18	18
Практических занятий (ПЗ)	36	36
Самостоятельная работа (всего), в том числе	54	54
Подготовка к практическим занятиям	32	32
Подготовка к контрольным работам	12	12
Проработка лекционного материала	10	10
Общая трудоемкость, ч	108	108
Зачетные Единицы Трудоемкости	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Наименование раздела дисциплины	Лекции	Практические занятия	Самостоятельная работа студента	Всего часов	Формируемые компетенции (ОК, ПК)
1. Искусственный интеллект как научная область. История развития	2	4	6	12	
2. Инженерия знаний	2	4	8	14	
3. Модели представления знаний в системах искусственного интеллекта	2	4	7	13	
4. Логический подход построения систем искусственного интеллекта	2	4	7	13	ПК-12
5. Кибернетический подход построения систем искусст-го интеллекта	2	4	6	12	11IX-12
6. Архитектура систем искусственного интеллекта.	2	4	6	12	
7. Принципы построения систем искусственного интеллекта	2	4	6	12	
8. Прикладные системы искусственного интеллекта	4	8	8	20	
Итого	18	36	54	108	

5.2. Содержание разделов дисциплины

Разделы дисциплины	Содержание разделов	Трудоем- мость, ч	ПК
1. Искусственный интеллект как на- учная область. История развития	Основные направления исследований систем искусственного интеллекта (ИИ). Предпосылки возникновения. Основные приложения ИИ. Особенности знаний. Свойства знаний: интерпретируемость, структурируемость, связность, семантическая метрика, активность	2	
2. Инженерия знаний	Классификация знаний. Понятие поля знаний. Предметный язык. Семиотическая модель поля знаний. Структурирование знаний. Знания и данные. Свойства знаний и отличие знаний от данных. Типы знаний: декларативные и процедурные, экстенсиональные и интенсиональные. Стратегии получения знаний. Выявление знаний из данных. Data mining. Язык инженерии знаний OPS5. Язык инженерии знаний EMYSIN/	2	
3. Модели представления знаний в системах искусственного интеллекта	Модели представления знаний на основе правил. Вывод на знаниях, представленных с помощью правил. Продукционная модель представления знаний и правила их обработки. Выводы, основанные на продукционных правилах. Фреймы и фреймовые системы. Объекты с фреймами. Основные атрибуты (слоты) объекта. Процедурные фреймы и слоты. Представление знаний в виде семантических сетей	2	ПК-12
4. Логический под- ход построения систем искусствен- ного интеллекта	Теория нечетких множеств - основа псевдофизических логик. Нечеткая логика. Понятия лингвистической переменной. Нечеткий вывод для систем искусственного интеллкта. Пространственные и временные логики	2	
5. Кибернетический подход построения систем искусственного интеллекта	Нейронные сети. Модели нейронных сетей. Алгоритмы обучения. Особенности обработки символьной и численной информации в нейронных сетях.	2	
6. Архитектура систем искусственного интеллекта.	Архитектура и основные составные части систем ИИ. Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое. Программирование и их место в системах ИИ.	2	
7. Принципы по- строения систем искусственного ин- теллекта.	Условия применимости систем искусственного интеллекта. Типы систем искусственного интеллекта в зависимости от степени завершенности и особенностей использования: демонстрационные, исследовательские, промышленные, коммерческие.	2	

	Этапы построения систем искусственного интеллекта: идентификация, концептуализация, формализация, реализация, тестирование. Стадии: демонстрационный прототип, исследовательский прототип, действующий.		
8. Прикладные системы искусственного интеллекта	Экспертные интеллектуальные системы. Информационные системы знаний на основе онтологий Их области применения и решаемые ими задач. Интеллектуальные роботы. Их обобщенная структура. Системы общения на естественном языке и речевой ввод-вывод. Системы распознавании образов. Применение ИИ в системах управления производством. Применение ИИ в делопроизводстве и в сети Internet	4	ПК-12
Итого		18	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) дисциплинами и обеспечиваемыми (последующими) дисциплинами

Наименование обеспечивающих (предыдущих) дисциплин и	Разделы дисциплины, для которых необходимо							
обеспечиваемых (последующих)	изучен	ие обе	спечив	ающих	(предь	ідущих	к) дисц	иплин
дисциплин	1	2	3	4	5	6	7	8
Предшествующие	е дисциплины							
1. Теория систем и системный анализ (Б3.В.ОД.6)	+			+				+
2. Теория автоматов и формальных языков (Б1.В.ОД.10)				+	+	+	+	+
3. Архитектура вычислительных систем (Б1.Б.20)		+	+	+	+	+		
Последующие д								
1. BKP	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Компетенции Л П	I3 CPC	Формы контроля
ПК-12 +	+ +	Тестовый опрос, контрольная работа, доклад-презентация, проверка конспекта, зачет

Л – лекция; ПЗ – практические занятия; СРС – самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Технологии интерактивного обучения не предусмотрены учеб. планом согласно $\Phi FOC\ BO\ N\!\!_{2}\ 229$ от 12.03.2015 г.

7. ЛАБОРАТОРНЫЕ РАБОТЫ — не предусмотрены

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Раздел		Трудо-	ПК
дисц.	Тема практического занятия	емкость, ч	
1	Классификация знаний	4	
2	Выявление знаний в системах искусственного интеллекта	4	
3	Построение моделей в системах искусственного интеллекта	4	
4	Продукции в системах искусственного интеллекта	4	ПК-12
5	Фреймовые модели в системах искусственного интеллекта	4	
6	Нейронные сети в системах искусственного интеллекта	4	
7	Работа с редакторами онтологий	4	
8	Построение систем искусст. интеллекта различных предметных областей	8	
Итого		36	

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

	Трудоемкость, ч										Контроль
Виды самостоятельной работы		По разделам Всего					ПК	выполнения			
	1 2 2			4	5	6	7	8	по виду		работы
	1		3	+)	U	/	О	CPC		
1. Проработка лекционного материала	1	2	1	1	1	1	1	2	10		Тестовый опрос,
										ПК-12	проверка конспекта
2. Подготовка к ПЗ	4	4	4	4	4	4	4	4	32		Доклад-презентация
3. Подготовка к контрольным работам	1	2	2	2	1	1	1	2	12		Контрольная работа
Всего по разделу дисциплины	6	8	7	7	6	6	6	8	54		

10. КУРСОВОЙ ПРОЕКТ — не предусмотрен

11. РЕЙТИНГОВАЯ СИСТЕМА ДЛЯ ОЦЕНКИ УСПЕВАЕМОСТИ СТУДЕНТОВ

11.1. Балльные оценки для элементов контроля Зачет — 7 семестр

	Макс. балл	Макс. балл	Макс. балл на период	Всего
Элементы учебной деятельности	на 1-ую КТ	на период между	между 2 КТ и концом	за семестр
	с начала семестра	1 КТ и 2 КТ	семестра	
Тестовый опрос	10	10	10	30
Доклад-презентация	10	10	10	30
Контрольная работа	8	8	8	24
Компонент своевременности	6	5	5	16
Итого максимум за период	34	33	33	100
Нарастающим итогом	34	67	100	

11.2. Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60 % от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично)	90 – 100	А (отлично)
	85 – 89	В (очень хорошо)
4 (хорошо)	75 – 84	С (хорошо)
	70 – 74	D (удор догроритани на)
2 (удордотроритони но)	65 – 69	D (удовлетворительно)
3 (удовлетворительно)	60 – 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1. Основная литература

- 1. Болотова Л.С. Системы искусственного интеллекта: модели и технологии, основанные на знаниях: учебник для вузов М.: Финансы и статистика, 2012. 664 с. В библиотеке ТУСУРа: 15 экз.
- 2. Замятин Н.В. Нечеткая логика и нейронные сети: учеб. пособие. Томск: Эль Контент, 2014. 146 с. В библиотеке ТУСУРа: 10 экз.
- 3. Цуканова Н.И. Теория и практика логического программирования на языке Visual Prolog 7: учеб. пособие для вузов / Н.И. Цуканова, Т.А. Дмитриева. М.: Горячая линия-Телеком, 2013. 232 с. [Электронный ресурс]: ЭБС «ЛАНЬ». URL: https://e.lanbook.com/reader/book/11847/#1

12.2. Дополнительная литература

- 1. Павлов С.Н. Системы искусственного интеллекта: учеб. пособие— Томск: ТМЦДО, 2002. 187 с. В библиотеке ТУСУРа: 21 экз.
- 2. Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польск. И.Д. Рудинского. / Д. Рутковская, М. Пилиньский, Л. Рутковский. 2-е изд. стереотип. М.: Горячая линия-Телеком, 2013. 384 с. [Электронный ресурс]: ЭБС «ЛАНЬ». URL: https://e.lanbook.com/reader/book/11843/#1
- 3. Системы искусственного интеллекта. Практический курс: учеб. пособие для вузов / В.А. Чулюков [и др.]; ред. И.Ф. Астахова. М.: БИНОМ. Лаборатория знаний, 2008; М.: Физматлит, 2008. 292 с. В библиотеке ТУСУРа: 1 экз.

12.3. Учебно-методические пособия и требуемое программное обеспечение

Для обеспечения дисциплины используются следующие методические указания:

- 1. Замятин Н.В. Системы искусственного интеллекта: учеб.-метод. пособие для самостоятельной работы студентов направления «Программная инженерия». Томск: ТУСУР, каф. АОИ, 2016. 16 с. [Электронный ресурс]: сайт кафедры АОИ. URL: http://aoi.tusur.ru/upload/methodical materials/SII sam 2016g file 750 6864.pdf
- 2. Замятин Н.В. Методические указания к практическим занятиям по дисциплине «Системы искусственного интеллекта» по направлению «Программная инженерия». Томск: ТУСУР, каф. АОИ, 2016. 41 с. [Электронный ресурс]: сайт кафедры АОИ. URL: http://aoi.tusur.ru/upload/methodical materials/SII Pr file 749 9176.pdf

Требуемое программное обеспечение:

Пакет прикладных программ PowerDesigner 12, CLIPS, VISUAL PROLOG

12.4. Необходимые базы данных, информационно-справочные и поисковые системы

Образовательный портал университета http://edu.tusur.ru/

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Доступ в Интернет из компьютерных классов
- 2. Проектор и экран

Приложение

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизации обработки информации (АОИ)

УТВЕР	ЖДА	Ю
Заве	дуюш	ций кафедрой АОИ
		Ю.П. Ехлаков
"	>>	2016 г

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «СИСТЕМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА» для направления подготовки бакалавра 09.03.04 «Программная инженерия» (учебный план набора 2013 г., 2014 г.)

Томск 2016

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины и представляет собой совокупность контрольно-измерительных материалов и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

При описании ФОСа по учебной дисциплине используется нижеприведенная терминология.

Компетенция – комплекс взаимосвязанных аспектов профессиональной деятельности, складывающихся из знаний, умений, навыков и/или опыта, объединенных с потенциальной способностью и готовностью студента (выпускника) справляться с решением задач, обусловленных видами и объектами профессиональной деятельности.

Этапы освоения компетенции – логически увязанные части жизненного цикла освоения компетенции Оценочные средства – совокупность контрольных/контрольно-измерительных и методических материалов, необходимых для определения степени сформированности компетенций по конкретной дисциплине

Контрольные материалы оценочного средства – конкретные задания, позволяющие определить результативность учебно-познавательной и проектной деятельности студента-- **КИМЫ**

Показатели оценивания компетенций – сформулированные на содержательном уровне требования к освоению компетенции, распределенные по этапам ее формирования и обусловленные видами и объектами профессиональной деятельности, обобщенными трудовыми функциями профессиональных стандартов, формулироваки (знать, уметь, владеть) из РП

Критерии оценивания компетенций – правило дифференциации показателя уровня освоения компетенции

Tr ~	1 05 5	V
Гаршица	I = I	ормирования содержания показателей оценивания компетенции
таолица .	1 — Обобщенная модель	ормирования содержания показателей оценивания компетенции

Этапы	Обобщенные показатели			
Этаны	Теоретические основы	Технологические основы	Инструментальные основы	
Знать	Обладает знаниями теорети-	Обладает знаниями по тех-	Обладает знаниями в области-	
	ческого материала, в том	нологиям решения профес-	методов и инструментальных	
	числе по содержанию терми-	сиональных задач	средств решения профессио-	
	нов, понятий, взаимосвязей		нальных задач	
	между ними			
Уметь	Обладает умениями по ис-	Обладает умениями адап-	Обладает умениями примене-	
	пользованию теоретического	тации технологий решения	ния методов и инструменталь-	
	материала для решения про-	профессиональных задач на	ных средств решения профес-	
	фессиональных задач	контрольных (модельных)	сиональных задач на контроль-	
		заданиях	ных (модельных) заданиях	
Владеть	Обладает навыками и/или опы-	Обладает навыками и/или	Обладает навыками и/или опы-	
	том преобразования (развития)	опытом адаптации техноло-	том применения методов и	
	теоретического материала в	гий решения профессио-	инструментальных средств ре-	
	рамках получения нового	нальных задач для реальных	шения профессиональных задач	
	знания	данных / ситуаций / условий	на реальных данных / ситуаций	
			/ условий	

Таблица 2 – Шкала оценивания уровня освоения компетенции

Уровни освоения компетенции	Экзаменационная оценка / дифференцированный зачет	Зачет
Неудовлетворительный	неудовлетворительно	не зачтено
Пороговый	удовлетворительно	зачтено
Базовый	хорошо	зачтено
Высокий	отлично	зачтено

2. КОМПЕТЕНЦИИ, ЭТАПЫ И ОЦЕНОЧНЫЕ СРЕДСТВА

Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины приведен в таблице 3.

Таблица 3 – Перечень закрепленных за дисциплиной

Код	Формулировка компетенции	Этапы формирования
ПК-12	Способность к формализации в своей предметной области с учетом огра-	Знать

	ничений используемых методов исследования	Уметь
		владеть

Для оценки качества освоения компетенций по дисциплине используются следующие оценочные средства.

Промежуточная аттестация

Зачет — устный опрос студента (диалог преподавателя со студентом), целью которого состоит в выявлении индивидуальных достижений студента по пониманию основных положений программной инженерии как методологии индустриального проектирования программного обеспечения.

Текущая аттестация (текущий контроль освоения компетенций)

Контрольная работа – средство промежуточного контроля остаточных знаний и умений, обычно состоящее из нескольких вопросов или заданий, которые студент должен решить, выполнить.

Практические занятия— оценка способности студента применить полученные ранее знания для проведения анализа, опыта, эксперимента и выполнения последующих расчетов, а также составления выводов.

Onpoc – диалог преподавателя со студентом, цель которого – систематизация и уточнение имеющихся у студента знаний, проверка его индивидуальных возможностей усвоения материала.

Проверка конспекта – предоставление студентом краткого изложения материала по изучаемой теме (в электронном виде либо рукописном на аудиторном занятии – лекции, практическом занятии, лабораторной работе).

3. ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Этапы формирования компетенций, показатели и используемые оценочные средства представлены в таблице 4. Критерии и уровни оценивания компетенции на каждом этапе приведены в таблице 5.

3.1. Компетенция ПК-12

ПК-12 – способность к формализации в своей предметной области с учетом ограничений используемых методов исследования

Таблица 4 – Этапы, показатели и используемые оценочные средства формирования компетенции

· ·		•	1 1 1	
Состав	Показатели оценивания компетенций по этапам			
	Знать	Уметь	Владеть	
Описание	основные модели пред-	работать с совре-	методами и правилами вывода и поиска	
показателей	ставления знаний; архи-	менными система-	решений на знаниях;	
	тектуры систем искусст-	ми искусственного	анализом различных моделей представления	
	венного интеллекта	интеллекта;	знаний для систем искусств. интеллекта	
Виды	Лекции, ПЗ,	ПЗ, самостоятельная	практические занятия	
занятий	самостоятельная работа	работа	самостоятельная работа	
Используемые	Тестовый опрос,	Опрос,	Опрос, проверка конспекта,	
оценочные	доклад-презентация,	проверка конспекта	контрольная работа	
средства	зачет			

Таблица 5 – Критерии и уровни оценивания компетенции

	1 1 11			
Уровни	Критерии оценивания компетенций по этапам			
оценивания	Знать	Знать Уметь		
Отлично	Способен перечислить	Способен корректно об-	Способен самостоятельно ис-	
(высокий	основные термины и поня-	рабатывать и анализировать	пользованием информационные,	
уровень)	тия и самостоятельно рас-	материалы, требуемые для	компьютерные и сетевые техно-	
	крыть содержание термина	подготовки реферата из пе-	логий для поиска информации	
	или понятия во взаимосвя-	риодических журналов и	из различных источников и баз	
	зи с иными элементами	информационных научно-	данных	
	терминологии	образовательных ресурсов		
Хорошо	Способен перечислить	Способен корректно обра-	Способен использовать инфор-	
(базовый	основные термины и поня-	батывать и анализировать	мационные, компьютерные и сете-	
уровень)	тия и самостоятельно рас-	материалы требуемые для	вые технологии для поиска ин-	
	крыть содержание термина	подготовки реферата из ин-	формации из различных источни-	
	или понятия	формационных научно-	ков и БД, пользуясь инструктив-	
		образовательных ресурсов	ными и справочными материалами	
Удовлет-	Способен перечислить ос-	Способен корректно обра-	Способен использовать инфор-	
во-	новные термины и понятия и	батывать материалы тре-	мационные, компьютерные и сете-	
рительно	корректно определить значе-	буемых для подготовки ре-	вые технологий для поиска ин-	
(порого-	ние термина или понятия	ферата из информационных	формации из различных источни-	

вый	через выбор из предложен-	научно-образовательных	ков и БД, периодически обращаясь
уровень)	ного списка вариантов	ресурсов	за помощью к преподавателю

4. КОНТРОЛЬНЫЕ МАТЕРИАЛЫ ОЦЕНОЧНЫХ СРЕДСТВ

Для реализации вышеперечисленных задач обучения используются следующие материалы:

 типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

Тесты: примерные варианты (всего 70 шт)

- 1. Какие интеллектуальные системы являются системами общего назначения?
 - 1. Системы идентификации
 - + 2. Экспертные системы
 - 3. Нейронные сети
 - 4. Робототехнические системы
- 2. К самоорганизующимся системам относятся?
 - 1. Системы распознавания
 - 2. Игровые системы
 - 3. системы реферирования текстов
 - + 4. Нейронные сети
- 3. Какие системы основываются на индуктивном обкчении
 - + 1. Нейронные сети
 - 2 Системы распознавания текста
 - 3. Экспертные системы
 - 4. Интеллектуальные пакеты прикладных программ
 - 4. Эвристический поиск используется в? (несколько правильных ответов)
 - 1. Нейронных сетях
 - + 2. Экспертных системах
 - 3. Игровых системах
 - 4. Семантических сетях

Темы контрольных работ

- 1. Построить семантическую сеть для различных предметных областей
- 2. Построить фреймовую модель для различных предметных областей
- 3. Построить онтолоическую модель для различных предметных областей
- 4. Построить логическую модель для различных предметных областей

Темы практических работ

- 1. Графовая модель предметной области
- 2. Программирование на ПРОЛОГЕ выбранной предметной области
- 3. Программирование в среде CLIPS выбранной предметной области
- 4. Работа с нейронной сетью
- 5. Нечеткий вывод
- 6. Разработка простейшей экспертной системы

7.

Темы для самостоятельной работы:

- 1. Теория правдоподобия
- 2. Метод резолюций
- 3. Вероятностный вывод
- 4. Программная среда CLIPS
- 5. Мультиагентные системы
- 6. Естественно-языковые интерфейсы

4.1. Промежуточная аттестация

Промежуточная аттестация реализуется посредством проведения зачета. Зачет может быть проставлен по рейтингу, полученному студентом по результатам освоения компетенции в течение семестра либо проведен в формате устного опроса. Зачет выставляется при успешном выполнении всех текущих элементов контроля (подготовке реферата, докладе на семинаре), сдаче зачета

Примерные вопросы на зачет

1. Понятия данные и знания. Приведите примеры

- 2. Охарактеризуйте основные направления исследований, проводимые в области искусственного интеллекта. Приведите известные вам примеры интеллектуальных систем.
- 3. Назовите основные функции, присущие ИИС. На чем основана их реализация.
- 4. Дайте краткую характеристику систем с интеллектуальным интерфейсом, экспертных систем, самообучающихся систем и адаптивных информационных систем.
- 5. Сформулируйте основные отличия систем искусственного интеллекта от обычных программных средств.
- 6. Перечислите и охарактеризуйте основные компоненты статических экспертных систем.
- 7. Охарактеризуйте профили и функции специалистов, привлекающихся для разработки экспертных систем.
- 8. Чем отличаются динамические экспертные системы от статических.
- 9. Охарактеризуйте экспертную систему по следующим параметрам: типу приложения, стадии существования, масштабу, типу проблемной среды, типу решаемой задачи.
- 10. Расскажите об основных характеристиках инструментальных средств, предназначенных для разработки интеллектуальных информационных систем (уровень используемого языка, парадигма программирования; способ представления знаний, механизм вывода и моделирования, средства приобретения знаний, технологии разработки приложений).
- 11. Чем отличаются знания от данных. Приведите определения знаний.
- 12. Дайте характеристику основных признаков, по которым классифицируются знания (природа знаний, способ приобретения знаний, тип представления знаний).
- 13. Расскажите о логических способах представления знаний. Укажите преимущественную область применения логической модели.
- 14. Проведите формализацию небольшого фрагмента знаний средствами логики высказываний (логики предикатов).
- 15. Охарактеризуйте продукционную модель представления знаний. Приведите примеры представления знаний правилами. В чем отличия между продукционными системами с прямыми, обратными и двунаправленными выводами?
- 16. Опишите фреймовую модель представления знаний. Приведите пример фреймового представления.
- 17. Охарактеризуйте модель представления знаний в виде семантической сети. Расскажите об основных видах используемых в этой модели отношений.
- 18. Приведите примеры логического вывода с использованием правил *ModusPonendoPonensu Цепное* заключение.
- 19. Докажите предложенную тавтологию семантическим (синтаксическим) методом.
- 20. Расскажите о теоремах логики и их использовании в ИИС. Приведите примеры.
- 21. Опишите возможности применения в логическом выводе операции эквивалентности. Приведите примеры тавтологий с эквивалентностями.
- 22. Опишите стратегию доказательства с введением допущения. Приведите пример.
- 23. Рассмотрите пример доказательства путем приведения к противоречию.
- 24. Расскажите о стратегии доказательства методом резолюции. Приведите пример.
- 25. Опишите функционирование механизма вывода продукционной ЭС и охарактеризуйте его составляющие: компоненту вывода и управляющую компоненту.
- 26. Сформулируйте собственные примеры прямого и обратного вывода в ЭС продукционного типа.
- 27. Приведите пример представления знаний в виде И-ИЛИ-графа.
- 28. Опишите и представьте в графическом виде стратегии поиска решений: в глубину, ширину, разбиением на подзадачи.
- 29. Расскажите о способах организации логического вывода в интеллектуальных системах с фреймовым представлением знаний.
- 30. Поясните смысл понятия «нечеткость» знаний. Дайте характеристику компонентам нечеткости.
- 31. Что такое недетерминированность выводов. Какие средства следует использовать в системах, обладающих этим свойством.
- 32. Расскажите о способах устранения многозначности. Почему ее необходимо устранять. Приведите примеры.
- 33. Какими способами можно представлять и обрабатывать ненадежные знания. Приведите примеры.
- 34. Охарактеризуйте способы обработки неполных знаний в интеллектуальных системах. Приведите собственный пример появления противоречия в логической ЭС при добавлении нового знания.
- 35. Преимущества по сравнению с логическими имеют фреймовые системы.
- 36. Дайте формальное определение абдукции и объясните, чем она отличается от дедукции. Приведи-

- те примеры.
- 37. Дайте определение понятий «лингвистическая переменная» и «нечеткое множество», поясните их на примере. Операции над нечеткими множествами.
- 38. Дайте определение нечеткого отношения и расскажите о свойствах нечетких отношений. Использование нечетких отношений в ИИС.
- 39. Нечеткая импликация. Ее реализация для правил с одним выходом и двумя выходами. Приведите примеры.
- 40. Охарактеризуйте основные аспекты процесса извлечения знаний (психологический, лингвистический, гносеологический).
- 41. Особенности структурирования знаний на основе структурного и объектно-ориентированного полхода.
- 42. Сравнительная характеристика методов извлечения знаний.
- 43. Методы машинного обучения.
- 44. Индуктивные и дедуктивные методы вывода в логике.
- 45. Отличия хранилищ данных от баз данных.
- 46. Интеллектуальный анализ данных.
- 47. Примеры передаточных функций в искусственном нейроне.
- 48. Методы обучения ИНС.
- 49. Сравнение однослойных и многослойных ИНС
- 50. Основные направления эволюционного моделирования. Генетические алгоритмы.
- 51. Операторы репродукции в простом генетическом алгоритме.
- 52. Фундаментальная теорема генетического алгоритма.
- 53. Основные этапы технологии генетического программирования.
- 54. Сравнение метода эволюционных стратегий с эволюционным программированием и генетическими алгоритмами.
- 55. Мультиагентные технологии. Агент и его возможная реализация.
- 56. Свойства интеллектуальных агентов.
- 57. Архитектура мультиагентных систем.
- 58. Свойства мобильных и статических агентов.
- 59. Перспективы развития систем искусственного интеллекта

4.2. Текущая аттестация (текущий контроль освоения компетенций)

4.2.1. Тестирование

Тестирование проводится в целях оперативного мониторинга качества усвоения теоретического и практического материала (таблица 8).

Таблица 6 – Шкала оценивания компетенций при тестировании

Шкала оценивания		Уровень освоения компетенции		
	Высокий	Базовый	Пороговый	
Удельный вес правильных ответов по темам дисциплины,	Более 90	70–90	50-70	
связанным с соответствующей компетенцией, %				

4.2.2. Самостоятельная работа

Самостоятельная работа проводится в форме изучения литературных источников отечественных и зарубежных авторов по выбранной теме, написании реферата и подготовке слайд-презентации, раскрывающей содержание реферата. Тематика рефератов должна быть связана как с вопросами анализа рынков программных продуктов и информационных технологий, так и с их использованием в конкретных предметных областях. Рекомендации по подготовке доклада и презентации по теме самостоятельной работы приведены в методических указаниях к практическим занятиям и организации самостоятельной работы для студентов, обучающихся по направлению 09.03.04 «Программная инженерия» (уровень магистратуры). – Томск: ТУ-СУР, каф. АОИ, 2016. – 14 с. [Электронный ресурс]: сайт каф. АОИ. – URL: http://aoi.tusur.ru/upload/methodical_materials/ MU_BI_SRV_sam_ubg_5_file__79_4913.pdf

Темы докладов

- 1. История развития искусственного интеллекта
- 2. Интеллектуальное программирование
- 3. Самоорганизующиеся системы
- 4. Язык OWL
- 5. Применение экспертных систем

- 6. Перспективы мультиагентных систем7. Интеллектуальные естественно-языковые интерфейсы