МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

« ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)»

УТВЕРЖДАЮ

Дипектов зепартументя образования Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович

« Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ $\Phi H B H K A$

	(наименова	иние у	чебно	— Й ДИСЦ	HIUIH	ы)					
Ур	овень основной образовательной програ-	ммы				авриа	IT				
* -		(бак	алаврі	ват, ма	систр	arvna	спени	алитет	·)		
Hai	правление(я) подготовки (специальность) 09.	03.01	"Инф	орма	гика и	і вычі	ислите	льна:	я техн	ика"
	(полное наименование направлен	HIS DO	TOTOL	зки (сп	ениал	ъності	и))		***********************	****	
Пре	офиль(и <u>) "Системы автоматизирова</u>	ниого	прое	ктиро	вания	ι''					
	tu sauce sur										
Фаг	(полное наименование профиля на очная	аправ.	кинэг	подгот	говки	(спець	ыльно	сти))			
*P O J		27		·	· -	······································	······································	·	***************************************	****	
Фаг	-оноа, очно) (ФВС) матальных систем (ФВС)	заочна v	ая (веч	ерняя), заоч	(ная)					
	(сокращенное и по		137313144		u.s. dans	** *** ***		······································			***************************************
Каф	редра "Компьютерные системы в уз	nnara	PHUM	nonan U mnoe	ere was	увани (ў.161¢	1a) n / !: ***	VTIV "			
•	(сокращенное и полное	наими	HOROH	ue kad	e inst	Dann	n (NC	311)			
Кур	oe <u>1, 2</u>	.,		естр_			1 3				
			V. C./1	сстр			1-3	· ····································	***************************************	•••	
	Учебный план	набор	a 201	3, 201	4, 201	5 ron	а				
Pac	пределение рабочего времени:	•			11 - 7 -	- ~/~	•				
		went	7	100	7	; v	5	-	∞	<u> </u>	; mag
	D	<u> </u>	£	<u> </u>	T C	Ē	d.	£	<u>c</u>	0,	
	Виды учебной работы	, ž	351	: 32 32) a	166	160		Lec.	Всего	
		Cestectp	Семестр	Семестр	Семестр	Семестр	Семестр	Семестр	Семестр	22	Единны
1	Лекции	20		20						60	-
2	Лабораторные работы	16	·	16	 	ļ	ļ	:	· · · · · · · · · · · · · · · · · · ·	1 48	часов
3	Практические занятия	18	18	t	! !	 		1		54	часов
4	Курсовой проект/работа (КРС)	· * `` ·			!					34	часа
	(аудиторная)	'				'					часов
5	Всего аудиторных занятий (Сумма 1-4)	54	54	54	 	 				162	часов
6	Из них в интерактивной форме	13	13	14				:		40	часов
7	Самостоятельная работа студентов	*************************************		1) 1		†************************************	:	***************************************	717	TACUB
	(CPC)	54	54	54	!	!	•			162	часа
8	Всего (без экзамена) (Сумма 5,7)	108	108	108	 	 	·	,		324	часа
9	Самост, работа на подготовку, сдачу		·	•)			T	TACA
	экзамена		36	36	;	!				72	часа
0	Общая трудоемкость (Сумма 8.9)	108	111	1.1.1						207	

4

Диф. зачет _____

3ET

11

семестр

Экзамен 2, 3 семестр

Зачет 1

(в зачетных единицах)

Лист согласований

Рабочая программа составлена с учётом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 09.03.01 "Информатика и вычислительная техника" (уровень бакалавриата), утвержденного приказом Министерства образования и науки Российской Федерации от 12 января 2016 г. № 5, рассмотрена и утверждена на заседании кафедры физики 20 апреля 2016 г., протокол № 113.

Разработчики	. 3	
	e S	
профессор кафедры физики Ковбо	O.B. Boons www.	
профессор кафедры физики (должность, кафедра) Профессор кафедры физики (подпись)	О.В. Воеводина (Ф.И.О.)	-
J* A	,	
I		
 		
Зав. кафедрой физики профессор	Е.М. Окс	
(должность, кафедра) (полиць)	(Ф.И.О.)	
~/		
Рабочая программа согласована с факция долого в учили		
Рабочая программа согласована с факультетом вычислите выпускающей кафедрой направления подготовки	льных систем, профилирующей и	
выпускающей кафедрои направления подготовки		
- .		
Декан факультета вычислительных систем (ФВС)	Кар Е.В. Истигечева	
(название факультета)	(подрясь) (Ф.И.О.)	•
Зав. профилирующей кафедрой		
Компьютерные системы в изпорятельный в полити	ACC	
Компьютерные системы в управлении и проектировании (КСУГ (название кафедры)	Ю.А. Шурыгин	
• • • •	(ф.И.О.)	
Зав. выпускающей кафедрой	<i>y</i> *	
Компьютерные системы в управлении и проектировании (КСУГ)	О.А. Шурыгин	
(название кафедры)	(подпись) (ФИО)	
	(1000)	
Эксперты:		
,		
Методист кафедры физики	А.В. Меловник	
(место работы, занимаемая должность) (подп		<u>c</u>
. (ноди	(Ф.И.О.)	
	_	
	7_	
Методист кафедры КСУП	r/	
(место работы, занимаемая должность)	ись) (Ф.И.О.)	_
V	· · · · · · · · · · · · · · · · · · ·	

1. Цели и задачи дисциплины:

Цель изучения дисциплины "Физика" - подготовка будущего выпускника к производственно-технологической, экспериментально-исследовательской, проектно-конструкторской деятельности, формирование у студентов целостного представления о явлениях и законах окружающего мира в их единстве и взаимосвязи, вооружение бакалавров фундаментальными, комплексными знаниями о мире природы, ознакомление студентов с научными методами познания, выработка навыков владения ими на уровне, необходимом для решения практических задач, возникающих при выполнении профессиональных обязанностей

Задачи дисциплины: развитие способности использования законов физики в профессиональной деятельности; способности их применения для принятия решений; способности собирать, обобщать, обрабатывать и интерпретировать информацию, необходимую для формирования суждений по соответствующим научным проблемам.

2. Место дисциплины в структуре программы бакалавриата:

Дисциплина входит в состав базовой части программы бакалавриата Б1.Б.6. Осваивается в I-3 семестрах. Для освоения дисциплины необходимо знание основ дифференциального и интегрального исчисления, векторной алгебры, основ векторного анализа, теории дифференциальных уравнений, основ теории вероятностей и математической статистики.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины «Физика» направлен на формирование следующих компетенций:

ОК-7

Способность к самоорганизации и самообразованию.

Студент

- 1. Должен знать основные способы самоорганизации и самообразования.
- <u>2. Должен уметь</u> использовать самостоятельно полученные знания при объяснении результатов экспериментов, применять знания в области физики для освоения общепрофессиональных дисциплин и решения профессиональных задач.
- <u>3. Должен владеть</u> навыками самостоятельного использования источников получения информации в нетипичных ситуациях

ОПК-5

Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности. Студент

- <u>1. Должен знать</u> основной круг проблем по направлению деятельности, базовые принципы и методы их решения, основные способы и средства получения, хранения и переработки информации с использованием возможностей современных информационно-коммуникационных технологий, обязательные требования нормативных документов
- 2. Должен уметь использовать методы получения и способы обработки данных, необходимых для решения проблемы, использовать средства получения, хранения и переработки информации для написания отчетов по лабораторным работам. Использовать программы обработки и представления результатов. Строго выполнять обязательные требования нормативных документов 3. Должен владеть методологией теоретических и экспериментальных исследований по направлению деятельности, навыками обработки полученных результатов и представления их с учетом обязательных требований нормативных документов

4. Объем дисциплины и виды учебной работы Общая трудоемкость дисциплины составляет _____

Вид учебной работы Семестры Всего часов Аудиторные занятия (всего) В том числе: Лекции Лабораторные работы (ЛР) Практические занятия (ПЗ) Самостоятельная работа (всего) В том числе: Проработка лекционного материала Подготовка отчетов по лабораторным работам Изучение дополнительной литературы

Зачетные Единицы Трудоемкости

зачетных единиц.

Э

5. Содержание дисциплины

разделам программы

Подготовка к экзамену

Общая трудоемкость час

5.1. Разделы дисциплин и виды занятий

Выполнение индивидуальных заданий по основным

Вид промежуточной аттестации (зачет, экзамен)

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия.	Самост. работа студента	Всего час. (без экзам)	Формируемые компетенции (ОК, ОПК)
1.	Механика	6	8	6	18	38	ОК-7, ОПК-5
2.	Молекулярная физика и термодинамика	6	4	6	18	34	ОК-7, ОПК-5
3.	3. Электричество		4	6	18	36	ОК-7, ОПК-5
4.	Магнетизм	8	8	8	18	42	ОК-7, ОПК-5
5.	Колебания и волны	6	4	6	18	34	ОК-7, ОПК-5
6.	Волновая оптика	6	4	4	18	32	ОК-7, ОПК-5
7.	Квантовая оптика	5	8	5	12	30	ОК-7, ОПК-5
8.	Квантовая физика и физика атома	5	8	5	12	30	ОК-7, ОПК-5
9.	Элементы физики твердого тела	5	-	4	15	24	ОК-7, ОПК-5
10.	Физика атомного ядра и элементарных частиц	5	-	4	15	24	ОК-7, ОПК-5
Итого		60	48	54	162	324	

Э

5.2. Содержание разделов дисциплины (по лекциям)

№ п/ п	Наименование разделов	Содержание разделов	Трудоем кость (час.)	Формируемы е компетенции (ОК, ОПК)			
		1 Семестр 20 часов					
1.	Механика Кинематика	Предмет и задачи дисциплины. Всеобщий характер законов природы. Роль физики в науке и жизни, в формировании профессиональных знаний. Основные кинематические характеристики движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.					
	Динамика	Инерциальные и неинерциальные системы отсчета. Законы Ньютона. Закон сохранения импульса. Кинетическая энергия. Консервативные силы и системы. Потенциальная энергия. Связь между потенциальной энергией и силой. Закон сохранения механической энергии. Динамика вращательного движения твёрдого тела. Момент инерции. Момент силы. Момент импульса. Закон сохранения момента импульса. Трехмерное вращение твердого тела. Гироскоп.		ОК-7, ОПК-5			
	Релятивистская механика	Постулаты Эйнштейна. Преобразования Лоренца. Относительность понятий: одновременность, длина, промежуток времени. Релятивистская динамика. Релятивистские выражения для импульса, кинетической и полной энергии. Взаимосвязь массы и энергии. Энергия покоя. Принцип эквивалентности сил инерции и сил тяготения. Основные положения общей теории относительности.	длина, промежуток истские выражения ргии. Взаимосвязь вивалентности сил				
2.	Молекулярная физика и термодинамика Статистика	Уравнения состояния идеального газа. Изопроцессы идеального газа. Теплоемкость идеальных газов, число степеней свободы. Уравнение Майера. Классические статистики. Скорости газовых молекул. Функция распределения Максвелла по проекциям и абсолютным значениям скоростей. Функция распределения Больцмана. Барометрическая формула.					
	Термодинамика	Термодинамические функции. Первое начало термодинамики. Цикл Карно. Обратимые и необратимые процессы. Энтропия. Статистический смысл энтропии. Изменение энтропии при обратимых и необратимых процессах. Второе начало термодинамики. Принцип возрастания энтропии. Сущность проблемы тепловой смерти Вселенной. Третье начало термодинамики.		ОК-7, ОПК-5			
3.	Электричество	Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Напряжённость электрического поля. Силовые линии. Принцип суперпозиции электрических полей. Теорема Остроградского-Гаусса для вектора напряжённости электрического поля и ее использование для расчета электрических полей. Потенциал. Связь между напряжённостью электростатического поля и потенциалом. Разность потенциалов. Циркуляция вектора напряжённости электростатического поля. Поляризация диэлектриков. Сегнетоэлектрики. Вектор электрического смещения (электрическая индукция). Поток вектора электрического смещения. Изменение векторов Е и D на границе раздела двух диэлектриков. Свойство замкнутой проводящей оболочки. Электроёмкость. Конденсаторы. Соединение конденсаторов. Энергия заряженного проводника. Энергия заряженного конденсатора. Энергия электрического поля. Постоянный электрический ток. Плотность тока.		ОК-7, ОПК-5			

				T 1
		Электродвижущая сила. Обобщённый закон Ома для неоднородного участка цепи. Правила Кирхгофа для разветвлённых цепей. Мощность тока. Закон Джоуля-Ленца		
		2 Семестр		
4.	Магнетизм	Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчёту магнитных полей. Движение заряженных частиц в электромагнитных полях. Теорема Гаусса для вектора магнитной индукции. Теорема о циркуляции вектора магнитной индукции и её применение для расчёта полей. Поле соленоида и тороида. Сила Ампера. Контур с током в магнитном поле. Сила Лоренца. Эффект Холла. Намагниченность. Напряжённость магнитного поля. Магнитная проницаемость среды. Теорема о циркуляции вектора напряжённости магнитного поля. Диамагнетизм. Парамагнетизм. Ферромагнетизм. Работа по перемещению проводника с током в магнитном поле. Явление электромагнитной индукции. Явление самоиндукции. Индуктивность. Энергия магнитного поля. Уравнения Максвелла.	8	ОК-7, ОПК-5
5.	Колебания и волны Колебания	Основное уравнение гармонических колебаний. Колебательные системы. Метод векторных диаграмм. Сложение взаимноперпендикулярных колебаний. Свободные затухающие колебания. Параметры затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент затухания, добротность. Вынужденные колебания. Резонанс. Свободные электрические колебания в контуре без активного сопротивления. Свободные затухающие электрические колебания. Вынужденные электрические колебания. Резонанс тока и напряжения. Цепи переменного тока.	4	ОК-7, ОПК-5
	Волны	Упругие волны и их характеристики. Уравнения плоской и сферической волн. Фазовая скорость. Стоячие волны. Эффект Доплера. Свойства и особенности распространения акустических волн в различных средах. Электромагнитные волны и их характеристики. Вектор Умова-Пойнтинга. Свойства и особенности распространения электромагнитных волн в различных средах. Ближняя и дальняя зона излучателя.	2	
6.	Волновая оптика	Интерференция света. Опыт Юнга. Временная и пространственная когерентность. Интерференция при отражении от плоскопараллельной пластинки и клина. Кольца Ньютона. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля от круглого отверстия и от круглого непрозрачного диска. Дифракция Фраунгофера от щели. Дифракционная решётка. Угловая дисперсия и разрешающая способность решётки. Дифракция рентгеновских лучей. Естественный и поляризованный свет. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Дисперсия света. Рассеяние и поглощение света.	6	ОК-7, ОПК-5
		3 Семестр		
7.	Квантовая оптика	Тепловое излучение. Абсолютно чёрное тело. Закон Кирхгофа. Закон Стефана-Больцмана. Законы Вина. Квантовая гипотеза Планка. Свойства фотонов. Фотоэффект. Тормозное рентгеновское излучение. Эффект Комптона. Давление света.	5	ОК-7, ОПК-5
8.	Квантовая физика и физика атома	Гипотеза де Бройля. Соотношение неопределённостей Гейзенберга. Корпускулярно-волновой дуализм. Волновое уравнение Шредингера. Физический смысл Ф-функции. Смысл квантовых чисел. Принцип Паули. Движение свободной частицы. Квантование энергии электрона в одномерной потенциальной яме. Квантовый гармонический осциллятор. Прохождение частицы через потенциальный барьер. Закономерности в атомных спектрах. Модель атома Резерфорда.	5	ОК-7, ОПК-5

		Модель атома водорода Бора. Опыт Франка и Герца. Характеристическое рентгеновское излучение. Закон Мозли. Инверсия населённостей. Спонтанное и вынужденное излучения. Принцип работы лазеров.		
9.	Элементы физики твердого тела	Термодинамический и статистический способы описания коллектива частиц. Химический потенциал. Фермионы и бозоны. Функция распределения. Понятие о фазовом пространстве микрочастиц и его квантовании. Плотность состояний. Функция распределения невырожденного газа (Максвелла-Больцмана). Функция распределения вырожденного газа фермионов (Ферми-Дирака). Энергия Ферми. Функция распределения Бозе-Эйнштейна. Температурная зависимость электропроводности металлов. Энергетические зоны в кристаллах. Металлы. Полупроводники. Диэлектрики. Собственная и примесная проводимости полупроводников. Образование и принцип работы <i>р-п</i> -перехода. Диод. Триод. Солнечные элементы.	5	ОК-7, ОПК-5
10	Физика атомного ядра и элементарных частиц	Состав радиоактивного излучения Протонно-нейтронная модель ядра. Сильное взаимодействие нуклонов. Состав и размер ядра. Дефект массы, энергия связи нуклонов в ядре. Закономерности α- и β-распада. Слабое взаимодействие. Гамма—излучение. Закон радиоактивного распада. Основные типы ядерных реакций. Цепная реакция деления ядер. Основные сведения о ядерной энергетике Термоядерный синтез. Проблемы управляемых термоядерных реакций. Классификация элементарных частиц. Античастицы. Адроны и лептоны. Закон сохранения лептонного заряда. Классификация и структура адронов. Мезоны, барионы, гипероны. Закон сохранения барионного заряда. Кварки. Взаимодействие кварков. Глюоны . Сравнительные характеристики четырех видов взаимодействия, существующих в природе	5	ОК-7, ОПК-5

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Для освоения разделов дисциплины «Физика» необходимы знания, полученные в школе и получаемые

параллельно при изучении дисциплины «Математика».

№ п/п	Наименование обеспечивающих (предыдущих) и обеспечиваемых (последующих) дисциплин	I	№ № разделов данной дисциплины из табл.5.1, для которых необходимо изучение обеспечивающих (предыдущих) и обеспечиваемых (последующих)								
		-	2			дисци	иплин				1.0
		1	2	3	4	5	6	1	8	9	10
	Последующие	дисци	плин	Ы							
1.	Философия	+	+	+	+	+	+	+	+	+	+
2.	Экология	+	+	+	+	+	+				
3.	Экономика	+	+	+	+	+	+	+	+	+	+
4.	Электротехника, электроника и схемотехника	+	+	+	+	+	+	+	+	+	+
5.	Сети и телекоммуникации	+	+	+	+	+	+	+	+	+	+
6.	Безопасность жизнедеятельности	+	+	+	+	+	+	+	+	+	+
7.	Теория вероятностей, математическая статистика и случайные процессы	+	+	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень	Виды занятий					Формы контроля			
компетенций	Л	Лаб	Пр.	КР/КП	CPC				
ОК-7, ОПК-5	+	+	+	-	+	Опрос на лекции, проверка конспекта. Тест, отчет по практической работе. Устный ответ на практическом занятии, семинаре. Написание и защита реферата. Отчеты по лабораторным работам. Оценка работы в лаборатории			

 Π – лекция, Π р – практические и семинарские занятия, Лаб – лабораторные работы, $KP/K\Pi$ – курсовая работа/проект, CPC – самостоятельная работа студента

6. Методы и формы организации обучения. Технологии интерактивного обучения при разных формах занятий в часах

Формы Методы	Лекции (час)	Практические/ семинарские занятия (час)	Лабораторные занятия (час))	Всего
Обсуждение мультимедийных материалов, демонстрационных опытов, ответы на вопросы по представленному материалу на лекциях	4	-	-	4
Обсуждение индивидуальных заданий, рефератов по рассматриваемым темам	-	10	-	10
Выявление студентами ошибки в фрагменте мультимедийной презентации с заявленной ошибкой. Создание студентами мультимедийных презентаций, их демонстрация и обсуждение	6	-	-	6
Устный опрос, беседа, тестовый опрос при допуске к лабораторной работе и защите лабораторной работы	-		20	20
Итого интерактивных занятий	10	10	20	40

7. Лабораторный практикум 48 часов

№ п/п	№ раздела дисциплины из табл. 5.1	Трудо- емкость (час.)	Компетенции ОК, ОПК	
		1 Семестр 16 часов		
1.	1. Введение в лабораторный практикум. Обработка результатов физических измерений. Основные понятия теории погрешностей измерений. Оформление результатов лабораторной работы по физике. Кинематика равноускоренного вращения (маятник Обербека) Динамика маятника Обербека		8	ОК-7, ОПК-5
2.	2	Изучение распределения Максвелла	4	ОК-7, ОПК-5
3.	3	Измерение удельного электрического сопротивления металлов	4	ОК-7, ОПК-5
		2 Семестр 16 часов		
4.	4	Изучение магнитного поля кругового тока Определение удельного заряда электрона методом магнетрона	8	ОК-7, ОПК-5
5.	5	Изучение затухающих электромагнитных колебаний	4	ОК-7, ОПК-5
6.	6	Изучение интерференции лазерного излучения. Опыт Юнга	4	ОК-7, ОПК-5
	•	3 Семестр 16 часов		
		Изучение зависимости энергетической светимости серого тела от температуры	4	ОК-7, ОПК-5
7.	7	Внешний фотоэффект. Изучение закона Столетова и проверка формулы Эйнштейна	4	ОК-7, ОПК-5
8.	8	Изучение спектра атома водорода. (Постоянная Ридберга) Проверка соотношения неопределенностей для фотонов	8	ОК-7, ОПК-5

8. Практические занятия (семинары)

ı/п №	№ раздела дисциплины из табл. 5.1	Тематика практических занятий (семинаров)	Трудо- емкость (час.)	Компетенции ОК, ПК
		1 Семестр 18 часов		
1.	1	Кинематика поступательного и вращательного движения материальной точки	2	ОК-7, ОПК-
2.	1	Динамика поступательного и вращательного движения материальной точки и твердого тела. Сложное движение	2	ОК-7, ОПК-
3.	1	Законы сохранения в механике	2	ОК-7, ОПК-:
4.	2	Уравнение состояния идеального газа. Изопроцессы. Энтропия	2	ОК-7, ОПК-
5.	2	Распределения Максвелла и Больцмана. Средняя энергия молекул	2	ОК-7, ОПК-:
6.	2	Теплота. Теплоемкость. Внутренняя энергия и работа идеального газа. Начала термодинамики.	2	ОК-7, ОПК-
7.	3	Закон Кулона. Напряжённость электрического поля. Теорема Гаусса. Потенциал электростатического поля.	2	ОК-7, ОПК-:
8.	3	Энергия электрического поля. Разность потенциалов. Работа электростатического поля.	2	ОК-7, ОПК-:
9.	3	Постоянный электрический ток. Закон Джоуля-Ленца.	2	ОК-7, ОПК-
		2 Семестр 18 часов		
10.	4	Магнитное поле. Закон Био-Савара-Лапласа.	2	ОК-7, ОПК-
11.	4	Сила Ампера. Сила Лоренца.	2	ОК-7, ОПК-
11.	4	Электромагнитная индукция. Самоиндукция. Энергия поля.	4	ОК-7, ОПК-
12.	5	Гармонические колебания. Сложение гармонических колебаний. Затухающие, вынужденные колебания. Явление резонанса. Плоские, сферические волны. Эффект Доплера.	4	ОК-7, ОПК-
13.	5	Энергия электромагнитной волны. Спектр.	2	ОК-7, ОПК-
14.	6	Интерференция света. Пространственная, временная когерентность.	2	ОК-7, ОПК-
15.	6	Дифракция световых волн	2	ОК-7, ОПК-
		3 Семестр 18 часов		
16.	7	Тепловое излучение. Внешний фотоэффект. Эффект Комптона. Корпускулярно-волновой дуализм.	5	ОК-7, ОПК-
17.	8	Соотношение неопределённостей Гейзенберга. Уравнение Шрёдингера Квантовые числа. Теория атома Резерфорда-Бора. Квантовая теория строения многоэлектронных систем	5	ОК-7, ОПК-
18.	9	Зонная теория электропроводности твёрдых тел. Энергетические зоны в кристаллах. Электропроводность металлов. Температурная зависимость электропроводности металлов. Полупроводники. Эффект Холла. Образование и принцип работы <i>p-n</i> -перехода.	4	ОК-7, ОПК-
19.	10	Протонно-нейтронная модель строения ядра. Сильное обменное взаимодействие нуклонов в ядре. Состав радиоактивного излучения. Слабое лептонное взаимодействие. Элементарные частицы. Кварки. Четыре вида взаимодействий, существующие в природе	4	ОК-7, ОПК-

9. Самостоятельная работа

№	№ раздела	Тематика самостоятельной	Трудо-	Компетенции	Контроль выполнения работы
Π/Π	дисциплины	работы	емкость	ОК, ОПК	
	из табл. 5.1	(детализация)	(час.)		
1.	1-10	Проработка лекционного материала, подготовка к коллоквиумам, контрольным	45	ОК-7, ОПК-5	Тесты, домашние задания, контрольные работы, коллоквиумы
2.	1-10	Подготовка к интерактивным лекциям	16	ОК-7, ОПК-5	Опрос. Просмотр и обсуждение презентации. Оценка работы в ходе интерактивных лекций
3.	1-10	Подготовка к практическим занятиям	20	ОК-7, ОПК-5	Устный опрос, беседа, тестовый опрос на практическом занятии
4.	1-10	Выполнение индивидуальных заданий (ИЗ) по разделам 1 - 10	45	ОК-7, ОПК-5	Защита индивидуальных заданий
5.	1-10	Подготовка к лабораторным работам, написание отчетов по ЛР	36	ОК-7, ОПК-5	Опрос при допуске и защите лабораторных работ, тест
Обща	я трудоемкость		162		

Первый семестр

Темы индивидуальных заданий: 1. Кинематика материальной точки; 2. Динамика поступательного и вращательного движения; 3. Законы сохранения; 4. Классические статистики; 5. Уравнение состояния идеального газа, Изопроцессы; 6. Первое начало термодинамики; 7. Энтропия, Второе начало термодинамики; 6. Закон Кулона, Напряжённость электрического поля; 7. Потенциал и работа электрического поля; 8. Постоянный электрический ток.

Темы контрольных работ: 1. Механика; 2. Молекулярная физика и термодинамика; 3. Электростатика, Электрический ток;

Темы коллоквиумов: 1. Механика; Молекулярная физика и термодинамика; 2. Электростатика, Электрический ток.

Второй семестр

Темы индивидуальных заданий: 1. Магнитостатика; 2. Движение зарядов и токов в магнитном поле; 3. Электромагнитная индукция; 4. Колебания и волны; 5. Интерференция; 6. Дифракция; 7. Поляризация.

Темы контрольных работ: 1. Электромагнетизм; Колебания и волны 2. Волновая оптика.

Темы коллоквиумов: 1. Электромагнетизм; Колебания и волны 2. Волновая оптика

Третий семестр

Темы индивидуальных заданий: 1. Тепловое излучение; 2. Внешний фотоэффект. 3. Эффект Комптона; 4. Атомные и рентгеновские спектры; 5. Металлы, полупроводники, диэлектрики. Зонная теория; 6. Квантовые статистики; 7. Физика атомного ядра.

Темы контрольных работ: 1. Квантовая оптика; 2. Физика атома; 3. Физика атомного ядра.

Темы коллоквиумов: 1. Квантовая оптика; 2. Физика атома; 3. Физика атомного ядра.

10. Примерная тематика курсовых проектов (работ)

не предусмотрено учебным планом

11. Рейтинговая система для оценки текущей успеваемости студентов

Таблица 11.1 Балльные оценки для элементов контроля знаний в 1,2,3 семестрах.

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
Посещение занятий	2	2	2	6
Тестовый контроль	4	4	4	12
Коллоквиумы и контрольные работы на практических занятиях	9	9	9	27
Лабораторные работы	5	5	6	16
Компонент своевременности	3	3	3	9
Итого максимум за период:	23	23	24	70
Сдача экзамена (максимум)				30
Нарастающим итогом	23	46	70	100

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 85 % от максимальной суммы баллов на дату КТ	5
От 70% до 84% от максимальной суммы баллов на дату КТ	4
От 55% до 69% от максимальной суммы баллов на дату КТ	3
< 55 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (vonouro)	85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
	70 - 74	D (удовлетворительно)
3 (удовлетворительно)	65 – 69	В (удовлетворительно)
(зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1. Основная литература:

- 1. Савельев И.В. Курс общей физики: учебное пособие для втузов: В 3 т. 7-е изд., стереотип. СПб.: Лань, 2007.
 - **Т. 1:** Механика. Молекулярная физика. 432 с. (В библиотеке 155 экз.).
 - Т. 2: Электричество и магнетизм. Волны. Оптика. 496 с. (В библиотеке 148 экз.).
 - **Т. 3:** Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. 317 с. (В библиотеке 151 экз.).
- 2. Сивухин Д.В. Общий курс физики: учебное пособие для вузов в 5 т. М.: Физматлит, 2005-2006.
 - Т. 1: Механика. 5-е изд., стереотип. М.: Физматлит, 2006. 560 с. (В библиотеке 101 экз.).
 - **Т. 2:** Термодинамика и молекулярная физика. -5-е изд., испр. М.: Физматлит, 2006. 543 с. (В библиотеке -100 экз.).
 - **Т. 3:** Электричество. 5-е изд., стереотип. М.: Физматлит, 2006. 654 с. (В библиотеке 100 экз.).
 - **Т. 4:** Оптика. 3-е изд., стереотип. М.: Физматлит, 2005. 791 с. (В библиотеке 101 экз.).
 - **Т. 5:** Атомная и ядерная физика. 3-е изд., стереотип. М.: Физматлит, 2006. 782 с. (В библиотеке 100 экз.).
- 3. Зисман Г.А., Тодес О.М. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2007.
 - **Т. 1:** Механика. Молекулярная физика. Колебания и волны. 7-е изд. 352 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=505.
 - **Т. 2:** Электричество и магнетизм. 7-е изд. 352 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=151 с компьютеров ТУСУР.
 - **Т. 3:** Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц. -6-е изд. -512 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=508.

12.2. Дополнительная литература:

- 1. Савельев И.В. Сборник вопросов и задач по общей физике. [Электронный ресурс] 5-е изд., стереотип. СПб.: Лань, 2016. 292 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=71766 с компьютеров ТУСУР.
- 2. Иродов И.Е. Механика. Основные законы. -8-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2006. -309 с. (В библиотеке -99 экз.).
- 3. Иродов И.Е. Физика макросистем. Основные законы. 3-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2006. 207 с. (В библиотеке 50 экз.).
- 4. Иродов И.Е. Электромагнетизм. Основные законы: Учебное пособие для вузов. -5-е изд. М.: БИНОМ. Лаборатория знаний, 2006. -319 с. (В библиотеке -101 экз.).
- 5. Иродов И.Е. Волновые процессы. Основные законы: учебное пособие. 3-е изд. М.: БИНОМ. Лаборатория знаний, 2006. 263 с. (В библиотеке 100 экз.).
- 6. Иродов И.Е. Квантовая физика. Основные законы: Учебное пособие для вузов. 2-е изд., доп. М.: БИНОМ. Лаборатория знаний, 2004. 256 с. (В библиотеке 100 экз.).
- 7. Иродов И.Е. Задачи по общей физике: Учебное пособие для вузов. -7-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2007. 431 с. (В библиотеке -496 экз.).
- 8. Чертов А.Г., Воробьёв А.А. Задачник по физике: Учебное пособие для втузов. -8-е изд., перераб. и доп.- М.: Физматлит, 2007. 640 с. (В библиотеке -99 экз.).
- 9. Волькенштейн В.С. Сборник задач по общему курсу физики: Учебное пособие для втузов. -12-е изд., испр. М.: Наука, 1990. -396 с. (В библиотеке -148 экз.).
 - 10. Козырев А. В. Курс лекций по физике: Учебник. Томск: ТУСУР, 2007. 421 с. (В библиотеке 697 экз.).
- 11. Калашников Н.П., Кожевников Н.М. Физика. Интернет-тестирование базовых знаний. [Электронный ресурс] 1-е изд. СПб.: Лань, 2009. 160 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=172 с компьютеров ТУСУР.
 - 12. Лозовский В.Н. Курс физики. В 2-х тт. [Электронный ресурс] 6-е изд., испр. и доп. СПб.: Лань, 2009.
 - **Т. 1:** Физические основы механики. Электричество и магнетизм. Физика колебаний и волн. -576 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=236.
 - **Т. 2:** Квантовая физика. Статистическая физика и термодинамика. Современная физическая картина мира. -608 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=239 с компьютеров ТУСУР.
 - 13. Савельев И.В. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2016.
 - **Т. 1:** Механика. Молекулярная физика. 5-е изд., стереотип. СПб.: Лань, 2016. 356 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?p11 cid=25&p11 id=71762.
 - **Т. 2:** Электричество и магнетизм. Волны. Оптика. -12-е изд., стереотип. СПб.: Лань, 2016. -500 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=71761.
 - **Т. 3:** Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. 4-е изд., стереотип. СПб.: Лань, 2016. 308 с. Режим доступа on-line с компьютеров ТУСУР
 - 14. Фриш С.Э., Тиморева А.В. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2009.
 - **Т. 1:** Физические основы механики. Молекулярная физика. Колебания и волны. -13-е изд., стереотип. СПб.: Лань, 2009. 480 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=416 с компьютеров ТУСУР.
 - Т. 2: Электрические и электромагнетические явления. 12-е изд., стереотип. СПб.: Лань, 2009. 528 с. Режим

доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=418 с компьютеров ТУСУР.

Т. 3: Оптика. Атомная физика. – 10-е изд., стереотип. – СПб.: Лань, 2009. – 656 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=419.

12.3. Учебно-методические пособия и программное обеспечение

- 1. Учебно-методические пособия для практических занятий и самостоятельной работы [Электронный ресурс]:
 - 2.1. Чужков Ю.П. Работа и энергия. Законы сохранения в механике: сборник задач для практических занятий. Томск: ТУСУР, 2010. 24 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1100.
 - 2.2. Лячин А.В., Магазинников А.Л., Троян Л.А. Молекулярная физика: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2009.~30 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1234.
 - 2.3. Лячин А.В., Магазинников А.Л., Орловская Л.В. Термодинамика. Часть 1: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2009. 43 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1235.
 - 2.4. Галеева А.И., Лячин А.В., Магазинников А.Л. Термодинамика. Часть 2: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2010. 22 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1236.
 - 2.5. Бурачевский Ю.А. Волновая оптика: Методическое пособие. Сборник тестовых вопросов. 2009. 24 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1233.
 - 2.6. Чужков Ю.П. Элементы атомной физики и квантовой механики: Учебно-методическое пособие. Сборник тестовых вопросов. Томск: ТУСУР, 2011. 68 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1104.
- 2. Учебно-методические пособия для выполнения лабораторных работ [Электронный ресурс]:
 - 3.1. Бурдовицин В.А., Троян Л.А. Динамика маятника Обербека: Методические указания к лабораторной работе. 2007. 13 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/918.
 - 3.2. Галеева А.И., Иванова Е. В. Изучение электростатического поля: Методические указания к лабораторной работе. 2011. 11 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/926.
 - 3.3. Иванова Е. В. Изучение магнитного поля кругового тока: Методические указания к лабораторной работе. 2007. 12 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/863.
- 3.4. Бурачевский Ю.А. Определение удельного заряда электрона методом магнетрона: Методические указания к лабораторной работе. 2011. 14 с. Режим доступа для студентов, сотрудников ТУСУР: http://edu.tusur.ru/training/publications/864
- 3.5. Бурдовицин В.А., Троян Л.А. Изучение затухающих электромагнитных колебаний: Методические указания к лабораторной работе. -2007. 14 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/862.
- 3.6. Орловская Л.В. Изучение интерференции лазерного излучения: Методические указания к лабораторной работе. 2010. 9 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/911.
- 3.7. Федоров М. В., Бурдовицин В. А. Внешний фотоэффект. Изучение закона Столетова и проверка формулы Эйнштейна: Методические указания к лабораторной работе. 2009. 11 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/851.
- 3.8. Захаров Н.А., Кириллов А.М. Исследование спектра атома водорода: Методические указания к лабораторной работе. -2011. 18 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/917.
- 3. Компьютерные программы моделирования некоторых физических явлений в лабораторном практикуме.

12.4. Фонд оценочных средств (ФОС)

Фонд оценочных средств приведен в приложении 1 к данной программе.

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения чтения курса лекций используется специальная лекционная аудитория кафедры физики (230 ауд. ФЭТ), оснащённая мультимедийным проектором, компьютером и экранами. Для обеспечения лабораторных работ по физике используются 6 специализированных (под различные разделы курса) лаборатории кафедры физики, оснащённые соответствующими лабораторными установками, макетами, стендами и компьютерным оборудованием

14. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Объём часов, предусмотренных учебным планом для изучения курса физики, не позволяет раскрыть в лекциях подробно и глубоко материал. Поэтому при реализации программы студенты должны достаточно много работать самостоятельно как при повторении лекционного материала, так и подготовке к практическим, лабораторным и контрольным занятиям. Для обеспечения эффективного усвоения студентами материалов дисциплины необходимо на первом занятии обеспечить их списком вопросов, подлежащих изучению, списком основной и дополнительной литературы для самостоятельной работы.

Для текущего контроля успеваемости и промежуточной аттестации используется тестовый контроль знаний.

На лекциях необходимо обращать внимание на особенности применения рассматриваемого материала в последующих курсах, а также в будущей профессиональной деятельности.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

_УТВЕРЖДАЮ				
Проректор по учебной работе				
- 1/20	П. Е. Троян			
«»	2016 г.			

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ (ПРАКТИКЕ)

Физика

Уровень основной образовательной программы бакалавриат
Направление подготовки 09.03.01 "Информатика и вычислительная техника"
Профиль "Системы автоматизированного проектирования"
Форма обучения очная
Факультет вычислительных систем (ФВС)
Кафедра "Компьютерные системы в управлении и проектировании (КСУП) "
Курс(ы) Семестр(ы),
Учебный план набора
Экзамен2, 3 семестр
Вачет1 семестр

Томск 2016

Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины (практики) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов.

Перечень закрепленных за дисциплиной (практикой) компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОК-7	способность к самоорганизации и самообразованию	1. Должен знать основные способы самоорганизации и самообразования. 2. Должен уметь использовать самостоятельно полученные знания при объяснении результатов экспериментов, применять знания в области физики для освоения общепрофессиональных дисциплин и решения профессиональных задач. 3. Должен владеть навыками самостоятельного использования источников получения информации в нетипичных ситуациях.
ОПК-5	Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности.	1. Должен знать основной круг проблем по направлению деятельности, базовые принципы и методы их решения, основные способы и средства получения, хранения и переработки информации с использованием возможностей современных информационно-коммуникационных технологий, обязательные требования нормативных документов 2. Должен уметь использовать методы получения и способы обработки данных, необходимых для решения проблемы, использовать средства получения, хранения и переработки информации для написания отчетов по лабораторным работам. Использовать программы обработки и представления результатов. Строго выполнять обязательные требования нормативных документов 3. Должен владеть методологией теоретических и экспериментальных исследований по направлению деятельности, навыками обработки полученных результатов и представления их с учетом обязательных требований нормативных документов

1 Реализация компетенций

1.1 Компетенция ОК-7

ОК-7: способность к самоорганизации и самообразованию.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	основные способы самоорганизации и самообразования.	использовать самостоятельно полученные знания при объяснении результатов экспериментов, применять знания в области физики для освоения общепрофессиональных дисциплин и решения профессиональных задач.	навыками самостоятельного использования источников получения информации в нетипичных ситуациях.
Виды занятий	Лекции;Практические занятия;Самостоятельная работа студентов	 Лабораторные работы; Выполнение домашнего задания; Самостоятельная работа студентов 	 Лабораторные работы; Выполнение домашнего задания; Самостоятельная работа студентов
Используемые средства оценивания	Тест;Контрольная работа;Коллоквиум;Индивидуальное задание;Экзамен.	 Лабораторная работа; Конспект самостоятельной работы 	Защита лабораторных работ;Экзамен.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
-----------------------	-------	-------	---------

Отлично (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	 свободно владеет знаниями о способах самоорганизации и самообразования; представляет способы и результаты использования различных методов самообразования; обосновывает выбор методов для решения профессиональной задачи 	 свободно находит и применяет методы решения задач в незнакомых ситуациях; умеет физически и математически выражать, и аргументировано доказывать положения предметной области знания 	 способен руководить междисциплинарно й командой; свободно владеет разными способами саморазвития и самообразования
Хорошо (базовый уровень)	• понимает возможности всех методов самообразования и	• самостоятельно подбирает и готовит для эксперимента необходимое	критически осмысливает полученные знания;компетентен в

	самоорганизации; • имеет глубокое представление о положениях предметной области знания; • аргументирует выбор метода решения задачи; составляет план решения задачи; графически иллюстрирует задачу	оборудование; • применяет методы решения задач в незнакомых ситуациях; • умеет корректно выражать и аргументированно обосновывать положения предметной области знания	различных ситуациях (работа в междисциплинарно й команде); владеет разными способами представления информации
Удовлетворительно (пороговый уровень)	 дает определения основных понятий; воспроизводит основные положения предметной области знания; распознает физические объекты; знает основные методы решения типовых задач и умеет их применять на практике 	 умеет работать со справочной литературой; использует приборы, указанные в описании лабораторной работы; умеет представлять результаты своей работы 	 владеет терминологией предметной области знания; способен корректно представить знания в математической форме

1.2 Компетенция ОПК-5

ОПК-5: Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5- Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Основной круг	Использовать методы	Методологией
	проблем по	получения и способы	теоретических и
	направлению	обработки данных,	экспериментальных

	деятельности, базовые принципы и методы их решения. Способы поиска, хранения и обработки информации с использованием основных возможностей современных информационно-коммуникационных технологий. Обязательные требования нормативных документов.	необходимых для решения проблемы Использовать средства получения информации. Использовать текстовый редактор для написания отчетов по лабораторным работам. Использовать программу обработки и представления результатов. Строго выполнять обязательные требования нормативных документов	исследований по направлению деятельности; Навыками обработки полученных результатов и представления их с учетом обязательных требований нормативных документов.
Виды занятий	Лекции;практические занятия.лабораторные работы;	Лабораторные работы;Самостоятельная работа студентов.	• Лабораторные работы.
Используемые средства оценивания	Тест;устная беседа;экзамен.	• Лабораторные работы; Конспект самостоятельной работы.	Защита лабораторных работ.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий	Обладает	Обладает	Контролирует работу,
уровень)	фактическими и	диапазоном	проводит оценку,
	теоретическими	практических	совершенствует
	знаниями в	умений, требуемых	действия работы
	пределах	для развития	
	изучаемой области	творческих	

	с пониманием границ применимости	решений, абстрагирования проблем	
Хорошо (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
Удовлетворительно (пороговый уровень)	Обладает базовыми общими знаниями	Обладает основными умениями, требуемыми для выполнения простых задач	Работает при прямом наблюдении

Таблица 7 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
Отлично (высокий уровень)	 Сформированы систематические представления об основных проблемах и методах их решения Свободно владеет возможностями современных текстовых редакторов; Свободно владеет возможностями современных программ обработки и представления информации; Свободно владеет способами их совместного 	 Сформированы умения выбора эффективных решений основных задач Умеет свободно применять возможности современных текстовых редакторов в незнакомых ситуациях; Умеет свободно применять современные программы обработки и представления информации; Умеет свободно их 	 Реализует успешное и систематическое применение навыков владения современными методами теоретических и экспериментальных исследований Способен руководить междисциплинарной командой; Свободно владеет разными современными способами представления физической информации в графической и математической форме
	использования	совместно	• Строго выполняет

	• Знает обязательные требования нормативных документов	использовать • Умеет выполнять обязательные требования нормативных документов	обязательные требования нормативных документов
Хорошо (базовый уровень)	 Сформированы, но содержат незначительные пробелы представления об основных проблемах и методах их решений Понимает возможности современных текстовых редакторов; Понимает возможности современных программ обработки и представления информации; Понимает, как совместно их можно использовать обязательные требования нормативных документов 	 Сформированы в целом успешные, но содержащие незначительные пробелы умения выбора эффективных задач Умеет самостоятельно пользоваться современными текстовым редакторами; Умеет самостоятельно пользоваться современными программами обработки и представления информации; Умеет самостоятельно совместно их использовать Умеет техностоятельно совместно их использовать Умеет выполнять обязательные требования нормативных документов 	 Реализует в целом успешное, но содержащее незначительные пробелы применение навыков владения современными методами теоретических и экспериментальных исследований Компетентен в различных ситуациях (работа в междисциплинарной команде); Владеет разными способами представления физической информации в графической и математической форме Выполняет обязательные требования нормативных документов
Удовлетворительно (пороговый уровень)	• Имеет неполные представления об основных проблемах и методах их решений	• Сформированы в целом удовлетворительные, но не систематизированные умения выбора эффективных	• Реализует в целом удовлетворительное, но не систематизированное применение навыков владения
	• Понимает основные возможности современных текстовых	решений основных задач • Умеет работать с современными	современными методами теоретических и экспериментальных

2 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы:

– типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

2.1. Tecm:

2.1.1. Темы тестовых заданий для практических занятий:

- 1) Кинематика поступательного и вращательного движения.
- 2) Динамика поступательного и вращательного движения.
- 3) Работа, энергия и законы сохранения в механике.
- 4) Молекулярная физика. Классические статистики.
- 5) Первое начало термодинамики. Изопроцессы. Теплоёмкость.
- 6) Второе начало термодинамики. Энтропия.
- 7) Электростатика.
- 8) Постоянный электрический ток.
- 9) Магнитостатика.
- 10) Сила Лоренца и сила Ампера.
- 11) Явление электромагнитной индукции. Работа и энергия поля.
- 12) Гармонические колебания.
- 13) Свободные и вынужденные колебания.
- 14) Волны. Эффект Доплера.
- 15) Интерференция света.
- 16) Дифракция.
- 17) Поляризация.
- 18) Тепловое излучение.
- 19) Внешний фотоэффект.

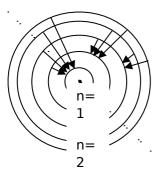
- 20) Эффект Комптона.
- 21) Корпускулярно-волновые свойства микрочастиц. Атомные спектры.
- 22) Элементы квантовой механики.

2.1.2 Пример тестового задания для практического занятия:

Атомные спектры Атом водорода. ВАРИАНТ 1

1. Стационарное уравнение Шредингера в общем случае имеет вид $\Delta\Psi + \frac{2m}{\hbar^2}(E-U)\Psi = 0$,

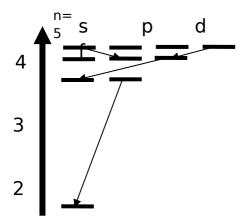
где U - потенциальная энергия микрочастицы. Электрону в атоме водорода соответствует уравнение...


1)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} E\Psi = 0$$
;

2)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} (E - \frac{m\omega^2 x^2}{2}) \Psi = 0$$
;

3)
$$\Delta \Psi + \frac{2m}{\hbar^2} E \Psi = 0$$
;

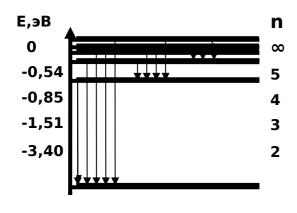
4)
$$\Delta \Psi + \frac{2m}{\hbar^2} (E + \frac{e^2}{4\pi\varepsilon_0 r}) \Psi = 0$$


2. На рисунке изображены стационарные орбиты атома водорода согласно модели Бора, а также изображены переходы электрона с одной стационарной орбиты на другую, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области эти переходы дают серию Лаймана, в видимой – серию Бальмера, в инфракрасной – серию Пашена.

Наибольшей частоте кванта в серии Бальмера соответствует переход...

1) n=5
$$\rightarrow$$
 n=1; 2) n=5 \rightarrow n=2; 3) n=4 \rightarrow n=3; 4) n=3 \rightarrow n=2

- 3. Главное квантовое число п определяет...
- 1) ориентацию³электронного облака в пространстве; 2) форму электронного облака; 3) размеры электронного облака; 4) собственный механический момент.
- **4.** Закон сохранения момента импульса накладывает ограничения на возможные переходы электрона



в атоме с одного уровня на другой (правило отбора).

В энергетическом спектре атома водорода (см. рис.) запрещенным переходом является...

1)
$$4s \rightarrow 3p$$
; 2) $4f \rightarrow 3d$; 3) $3d \rightarrow 2s$; 4) $2p \rightarrow 1s$

5.

На рисунке изображены энергетические уровни атома водорода согласно модели Бора, а также условно изображены переходы электрона с одного уровня на другой, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области эти переходы дают серию Лаймана, в видимой области дают серию Бальмера, в инфракрасной области дают серию Пашена.

Отношение минимальной частоты кванта энергии серии Лаймана к максимальной частоте кванта энергии серии Бальмера равно...

2.1.3 Темы тестовых заданий для лабораторных занятий:

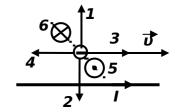
- 1) Кинематика равноускоренного вращения
- 2) Динамика маятника Обербека

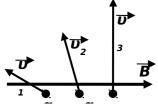
-13,6

- 3) Изучение распределения Максвелла
- 4) Измерение удельного электрического сопротивления металлов
- 5) Изучение магнитного поля кругового тока
- 6) Определение удельного заряда электрона методом магнетрона
- 7) Изучение затухающих электромагнитных колебаний
- 8) Изучение интерференции лазерного излучения. Опыт Юнга
- 9) Изучение зависимости энергетической светимости серого тела от температуры
- 10) Внешний фотоэффект. Изучение закона Столетова и проверка формулы

Эйнштейна

- 11) Изучение спектра атома водорода. (Постоянная Ридберга)
- 12) Проверка соотношения неопределенностей для фотонов


2.1.4 Пример тестового задания для лабораторного занятия:


ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНЕТРОНА Вариант 2

1. По какой траектории движется в общем случае заряженная частица в однородном магнитном поле?

Ответы: 1) по прямой; 2) по параболе; 3) по гиперболе; 4) по спирали; 5) по окружности.

2. Параллельно прямому проводнику на некотором расстоянии от него, движется со скоростью v электрон. Указать на рисунке направление силы Лоренца, действующей на электрон, если по проводнику пустить ток I.

3. Три частицы с одинаковыми массами и зарядами влетают в однородное магнитное поле с разными скоростями, как показано на

рисунке. Причём $v_1 < v_2 < v_3$. Как соотносятся между собой их периоды вращения T?

-q; e) $q_3 = -q$;

Ответы: 1) $T_1 < T_2 < T_3$; 2) $T_1 > T_2 > T_3$; 3) $T_1 = T_2 = T_3$;

- 4) Для ответа данных недостаточно.
- **4.** Микрочастицы влетают в однородное магнитное поле с постоянной скоростью, как показано на рисунке. Какой заряд имеют частицы?

a)
$$q_1 = +q$$
; 6) $q_2 = +q$; B) $q_3 = +q$;

$$q_2 =$$
 $q_3 = 0$.

$$\mathbf{x}$$
) $\mathbf{q}_1 = \mathbf{0}$; $\mathbf{3}$) $\mathbf{q}_2 = \mathbf{q}$
Ответы: 1) а,
в, г, з; $\mathbf{6}$) б, ж, и.

б, в; 2) г, д, е; 3) ж, з, и; 4) а, е, з; 5)

5. Какое из приведенных ниже выражений представляет собой силу, действующую на положительно заряженную частицу, движущуюся одновременно в электрическом и магнитном полях?

1)
$$F = qE + q[B, v];$$
 2) $F = qE + q[v, B];$ 3) $F = qE + q(B, v);$ 4)
 $F = qE + q(v, B).$

2.2 Темы контрольных работ:

- 1) Механика
- 2) Молекулярная физика и термодинамика
- 3) Электростатика
- 4) Электрический ток
- 5) Электромагнетизм
- 6) Колебания и волны
- 7) Волновая оптика
- 8) Квантовая оптика
- 9) Физика атома
- 10) Физика атомного ядра

2.2.1 Примеры контрольных работ.

Билет № 10 Молекулярная физика и термодинамика

- 1. Концентрация гелия увеличилась в 4 раза, при этом наиболее вероятная скорость уменьшилась в 4 раза. Как изменилось давление гелия?
- 2. При адиабатическом расширении хлора его объем увеличился в 5 раз. Какой при этом стала температура газа, если вначале она равнялась 300 К?

- 3. Стержень, раскрученный до угловой скорости ω вокруг оси, проходящей черев его середину ($J=ml^2/12$), останавливается под действием силы трения. Если раскрутить этот стержень до той же скорости ω вокруг оси, проходящей через его конец ($J=ml^2/3$), и остановить, то изменение энтропии Вселенной будет ... больше или меньше относительно первого случая, во сколько раз?
- 4. Определите относительное число молекул газа, скорости которых отличаются не более, чем на 7 процентов от средней арифметической скорости.
- 5. Нагрели плотно закрытый сосуд с водородом. Давление увеличилось в 4 раза. Как изменилась средняя квадратичная скорость движения молекул?
- 6. Определите температуру водорода, при которой скоростям v_1 = 600 м/с и v_2 = 1800 м/с соответствуют одинаковые значения функции распределения Максвелла f(v).
- 7. При комнатной температуре (300 K) пылинки взвешены в воздухе на высоте h=1 м от пола. Определите массу пылинки, если известно, что концентрация пылинок на высоте h отличается от концентрации у пола в 10 раз.

Билет 19

Колебания и волны

- 1. Материальная точка массой 0.2 кг совершает колебания по закону $S(t) = 0.2\cos(300t + 2) \text{ (м)}$. Определить в кН амплитудное значение силы, действующей на материальную точку.
- 2. Энергия конденсатора в колебательном контуре в какой-то момент времени равна 2,5 Дж. Ровно через период энергия этого конденсатора равна 2,4 Дж. Чему равна добротность колебательного контура?
- 3. Материальная точка совершает гармонические колебания с частотой 0,5 Гц. В начальный момент точка находилась в положении равновесия и двигалась со скоростью 20 см/с. Определить в см амплитуду смещения точки.
- 4. В системе происходят затухающие колебания. За время, в течение которого совершается 100 колебаний, амплитуда уменьшается в 2,72 раза. Определить логарифмический декремент колебаний.
- $5. \, \mathrm{B}$ вакууме вдоль оси x распространяются две плоские одинаково поляризованные электромагнитные волны, электрические составляющие которых изменяются по закону

$$\mathbf{E_1} = \mathbf{E_0} \cos(\omega t - kx)$$
 H $\mathbf{E_2} = \mathbf{E_0} \cos(\omega t - kx + \varphi)$.

Найти среднее значение плотности потока энергии. Расчёт произвести для амплитуды E_0 равной 210 В/м, и разности фаз $\phi = \pi/4$.

2.3. Темы коллоквиумов:

- 1) Механика;
- 2) Молекулярная физика и термодинамика;
- 3) Электростатика, Электрический ток;
- 4) Электромагнетизм;
- 5) Колебания и волны;
- 6) Волновая оптика;
- 7) Квантовая оптика;
- 8) Физика атома;
- 9) Физика атомного ядра.

2.4. Список индивидуальных творческих заданий:

- 1) Кинематика материальной точки.
- 2) Динамика поступательного и вращательного движения.
- 3) Законы сохранения.
- 4) Классические статистики.
- 5) Уравнение состояния идеального газа, Изопроцессы.
- 6) Первое начало термодинамики.
- 7) Энтропия, Второе начало термодинамики.
- 8) Закон Кулона. Напряжённость электрического поля.
- 9) Потенциал и работа электрического поля.

- 10) Постоянный электрический ток.
- 11) Магнитостатика.
- 12) Движение зарядов и токов в магнитном поле.
- 13) Электромагнитная индукция.
- 14) Колебания и волны.
- 15) Интерференция.
- 16) Дифракция.
- 17) Поляризация.
- 18) Тепловое излучение.
- 19) Внешний фотоэффект. Эффект Комптона.
- 20) Атомные и рентгеновские спектры.
- 21) Металлы, полупроводники, диэлектрики. Зонная теория.
- 22) Квантовые статистики.
- 23) Физика атомного ядра

2.4.1 Пример индивидуального творческого задания:

Потенциал и работа электрического поля

Билет 5

- 1. Электрон, двигаясь из состояния покоя в электрическом поле, достиг скорости 1,5·10⁴ км/с. Какую разность потенциалов прошёл электрон?
- 2. Металлический шар радиусом 61 мм и с потенциалом 469 В окружают незаряженной сферической оболочкой радиусом 452 мм. Каким будет потенциал шара после того, как он будет соединён с оболочкой?
- 3. Два точечных электрических заряда 56 нКл и 10 нКл находятся в воздухе на расстоянии 42 см друг от друга. Определить потенциал поля, создаваемого этими зарядами в точке, находящейся на расстоянии 60 см от первого заряда и 61 см от второго.
- 4. Радиусы двух проводящих концентрических сфер 44 см и 232 см. На каждой равномерно распределён заряд 277 нКл. Найти разность потенциалов между сферами.
- 5. Бесконечно длинный прямой проводящий цилиндр радиусом 1521 мкм равномерно заряжен с линейной плотностью заряда 8 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстоянии 44 мм и 261 мм от поверхности цилиндра.
- 6. Определить потенциал на расстоянии 31 мм от оси однородного бесконечно длинного диэлектрического стержня ($\epsilon=15$) радиусом 15 мм, если стержень заряжен с объёмной плотностью 20 мкКл/м³. Потенциал на оси стержня принять равным нулю.
- 7. Потенциал электрического поля имеет вид: $\varphi = 10(x^2 + y^2) + 20z^2$ (В). Найти модуль напряжённости поля в точке с координатами: x = 544 см, y = 261 см, z = 374 см.

Интерференция

Билет 12

- 1. Вычислить в нм длину световой волны в опыте с бипризмой Френеля, если расстояние между мнимыми изображениями источника света равно 1,22 мм. На экране, расположенном на расстоянии 1,5 м от источника света, наблюдают светлые и тёмные полосы, отстоящие друг от друга на 0,38 мм.
- 2. В опыте Юнга одна из щелей закрыта синим фильтром, а вторая красным. Будет ли при этих условиях наблюдаться на экране интерференционная картина?
- 3. Прозрачная плёнка толщиной 5,804 мкм из материала с показателем преломления 1,49 освещается рассеянным солнечным светом. Можно ли, рассматривая плёнку в отражённом свете, наблюдать интерференционную картину?
- 4. В точках A и B находятся когерентные источники световых волн с длиной волны 659 нм. На сколько радиан изменится разность фаз колебаний, приходящих в точку O, если на пути AO

поместить плёнку толщиной 1,652 мкм? Плёнка изготовлена из материала с показателем преломления 1,48.

- 5. Найти в нм наименьшую толщину мыльной плёнки, при которой могут стать заметными интерференционные цвета при рассматривании плёнки под углом 75 град. к плёнке. Показатель преломления мыльной жидкости равен 1,34, видимый свет лежит в диапазоне от 476 нм до 634 нм. Наблюдение ведется в проходящем свете. Ответ округлить до целого числа.
- 6. Определить преломляющий угол стеклянного клина, если при нормальном падении на него монохроматического света с длиной волны 457 нм число интерференционных полос, приходящихся на 1 см, равно 19. Показатель преломления стекла для указанной длины волны 1,5. Ответ дать в секундах. Принять, что 1 радиан равен 2×10⁵ сек.
- 7. Для уменьшения потерь света из-за отражения от поверхности стекла последнее покрывают тонким слоем вещества с показателем преломления, равным \sqrt{n} , где n показатель преломления стекла. В этом случае амплитуды световых колебаний, отраженных от обеих поверхностей слоя, одинаковы. При какой минимальной толщине слоя отражательная способность стекла в направлении нормали будет равна нулю для света с длиной волны 434 нм? Принять n = 1,5.

2.5. Список лабораторных работ:

- 1) Кинематика равноускоренного вращения (маятник Обербека)
- 2) Динамика маятника Обербека
- 3) Изучение распределения Максвелла
- 4) Измерение удельного электрического сопротивления металлов
- 5) Изучение магнитного поля кругового тока
- 6) Определение удельного заряда электрона методом магнетрона
- 7) Изучение затухающих электромагнитных колебаний
- 8) Изучение интерференции лазерного излучения. Опыт Юнга
- 9) Изучение зависимости энергетической светимости серого тела от температуры
- 10) Внешний фотоэффект. Изучение закона Столетова и проверка формулы Эйнштейна
- 11) Изучение спектра атома водорода. (Пост. Ридберга)
- 12) Проверка соотношения неопределенностей для фотонов.

2.6. Темы для самостоятельной работы:

- 1. Кинематика.
- 2. Динамика поступательного движения.
- 3. Динамика вращательного движения.
- 4. Молекулярная физика.
- 5. Классические статистики.
- 6. Термодинамика.
- 7. Электростатика.
- 8. Постоянный ток.
- 9. Магнитное поле в вакууме.
- 10. Магнитное поле в веществе.
- 11. Уравнения Максвелла.
- 12. Колебания.
- 13. Волны.
- 14. Волновая оптика.
- 15. Атомная физика.
- 16. Квантовая механика.
- 17. Квантовые статистики.

2.7. Список вопросов на зачёт и экзаменационных вопросов:

1 Семестр.

- 1. Всеобщий характер законов природы. Роль физики в науке и жизни, в формировании профессиональных знаний.
- 2. Основные кинематические характеристики движения: скорость и ускорение.
- 3. Нормальное и тангенциальное ускорение.
- 4. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.
- 5. Инерциальные и неинерциальные системы отсчета.
- 6. Законы Ньютона.
- 7. Закон сохранения импульса.
- 8. Кинетическая энергия.
- 9. Потенциальная энергия.
- 10. Связь между потенциальной энергией и силой.
- 11. Закон сохранения механической энергии.
- 12. Динамика вращательного движения твёрдого тела.
- 13. Момент инерции.
- 14. Момент силы.
- 15. Момент импульса.
- 16. Закон сохранения момента импульса.
- 17. Трехмерное вращение твердого тела. Гироскоп.
- 18. Постулаты Эйнштейна.
- 19. Преобразования Лоренца.
- 20. Относительность понятий: одновременность, длина, промежуток времени.
- 21. Релятивистские выражения для импульса, кинетической и полной энергии.
- 22. Взаимосвязь массы и энергии. Энергия покоя.
- 23. Принцип эквивалентности сил инерции и сил тяготения.
- 24. Основные положения общей теории относительности.
- 25. Уравнения состояния идеального газа.
- 26. Изопроцессы идеального газа.
- 27. Теплоемкость идеальных газов, число степеней свободы. Уравнение Майера.
- 28. Скорости газовых молекул. Функция распределения Максвелла по проекциям и абсолютным значениям скоростей.
- 29. Функция распределения Больцмана. Барометрическая формула
- 30. Термодинамические функции.
- 31. Первое начало термодинамики.
- 32. Цикл Карно.
- 33. Энтропия. Статистический смысл энтропии.
- 34. Изменение энтропии при обратимых и необратимых процессах.
- 35. Второе начало термодинамики. Принцип возрастания энтропии.
- 36. Сущность проблемы тепловой смерти Вселенной.
- 37. Третье начало термодинамики.
- 38. Электрический заряд. Закон сохранения электрического заряда.
- 39. Закон Кулона.
- 40. Напряжённость электрического поля.
- 41. Силовые линии.
- 42. Принцип суперпозиции электрических полей.
- 43. Теорема Остроградского-Гаусса для вектора напряжённости электрического поля и ее использование для расчета электрических полей.
- 44. Потенциал.
- 45. Связь между напряжённостью электростатического поля и потенциалом.
- 46 Разность потенциалов

- 47. Циркуляция вектора напряжённости электростатического поля.
- 48. Поляризация диэлектриков.
- 49. Сегнетоэлектрики.
- 50. Вектор электрического смещения (электрическая индукция).
- 51. Поток вектора электрического смещения.
- 52. Изменение векторов Е и D на границе раздела двух диэлектриков.
- 53. Свойство замкнутой проводящей оболочки.
- 54. Электроёмкость. Конденсаторы.
- 55. Соединение конденсаторов.
- 56. Энергия заряженного проводника.
- 57. Энергия заряженного конденсатора.
- 58. Энергия электрического поля.
- 59. Постоянный электрический ток.
- 60. Плотность тока.
- 61. Электродвижущая сила.
- 62. Обобщённый закон Ома для неоднородного участка цепи.
- 63. Правила Кирхгофа для разветвлённых цепей.
- 64. Мощность тока.
- 65. Закон Джоуля-Ленца

2 Семестр.

- 1. Вектор магнитной индукции.
- 2. Закон Био-Савара-Лапласа и его применение к расчёту магнитных полей.
- 3. Движение заряженных частиц в электромагнитных полях.
- 4. Теорема Гаусса для вектора магнитной индукции.
- 5. Теорема о циркуляции вектора магнитной индукции и её применение для расчёта полей.
- 6. Поле соленоида и тороида.
- 7. Сила Лоренца.
- 8. Сила Ампера.
- 9. Контур с током в магнитном поле.
- 10. Эффект Холла.
- 11. Намагниченность. Напряжённость магнитного поля. Магнитная проницаемость среды.
- 12. Теорема о циркуляции вектора напряжённости магнитного поля.
- 13. Диамагнетизм.
- 14. Парамагнетизм.
- 15. Ферромагнетизм.
- 16. Работа по перемещению проводника с током в магнитном поле.
- 17. Явление электромагнитной индукции.
- 18. Явление самоиндукции. Индуктивность.
- 19. Энергия магнитного поля.
- 20. Уравнения Максвелла.
- 21. Основное уравнение гармонических колебаний. Колебательные системы.
- 22. Метод векторных диаграмм.
- 23. Сложение взаимноперпендикулярных колебаний.
- 24. Свободные затухающие колебания.
- 25. Параметры затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент затухания, добротность.
- 26. Вынужденные колебания. Резонанс.
- 27. Свободные электрические колебания в контуре без активного сопротивления.
- 28. Свободные затухающие электрические колебания.
- 29. Вынужденные электрические колебания. Резонанс тока и напряжения.

- 30. Цепи переменного тока.
- 31. Упругие волны и их характеристики.
- 32. Уравнения плоской и сферической волн.
- 33. Фазовая скорость.
- 34. Стоячие волны.
- 35. Эффект Доплера.
- 36. Свойства и особенности распространения акустических волн в различных средах.
- 37. Электромагнитные волны и их характеристики.
- 38. Вектор Умова-Пойнтинга.
- 39. Свойства и особенности распространения электромагнитных волн в различных средах.
- 40. Ближняя и дальняя зона излучателя.
- 41. Интерференция света. Опыт Юнга.
- 42. Временная и пространственная когерентность.
- 43. Интерференция при отражении от плоскопараллельной пластинки и клина.
- 44. Кольца Ньютона.
- 45. Принцип Гюйгенса-Френеля.
- 46. Метод зон Френеля.
- 47. Дифракция Френеля от круглого отверстия и от круглого непрозрачного диска.
- 48. Дифракция Фраунгофера от щели.
- 49. Дифракционная решётка.
- 50. Угловая дисперсия и разрешающая способность решётки.
- 51. Дифракция рентгеновских лучей.
- 52. Естественный и поляризованный свет. Закон Малюса.
- 53. Закон Брюстера.
- 54. Двойное лучепреломление.
- 55. Дисперсия света.
- 56. Рассеяние и поглощение света.

3 Семестр.

- 1. Тепловое излучение.
- 2. Абсолютно чёрное тело.
- 3. Закон Кирхгофа.
- 4. Закон Стефана-Больцмана.
- 5. Законы Вина.
- 6. Квантовая гипотеза Планка.
- 7. Свойства фотонов.
- 8. Фотоэффект.
- 9. Тормозное рентгеновское излучение.
- 10. Эффект Комптона.
- 11. Давление света
- 12. Гипотеза де Бройля.
- 13. Соотношение неопределённостей Гейзенберга.
- 14. Корпускулярно-волновой дуализм.
- 15. Волновое уравнение Шредингера.
- 16. Физический смысл Ч-функции.
- 17. Смысл квантовых чисел.
- 18. Принцип Паули.
- 19. Движение свободной частицы.
- 20. Квантование энергии электрона в одномерной потенциальной яме.
- 21. Квантовый гармонический осциллятор.

- 22. Прохождение частицы через потенциальный барьер.
- 23. Закономерности в атомных спектрах.
- 24. Модель атома Резерфорда.
- 25. Модель атома водорода Бора.
- 26. Опыт Франка и Герца.
- 27. Характеристическое рентгеновское излучение. Закон Мозли.
- 28. Инверсия населённостей. Спонтанное и вынужденное излучения.
- 29. Принцип работы лазеров.
- 30. Термодинамический и статистический способы описания коллектива частиц.
- 31. Химический потенциал.
- 32. Фермионы и бозоны.
- 33. Функция распределения.
- 34. Понятие о фазовом пространстве микрочастиц и его квантовании.
- 35. Плотность состояний.
- 36. Функция распределения невырожденного газа (Максвелла-Больцмана).
- 37. Функция распределения вырожденного газа фермионов (Ферми-Дирака). Энергия Ферми.
- 38. Функция распределения Бозе-Эйнштейна.
- 39. Температурная зависимость электропроводности металлов.
- 40. Энергетические зоны в кристаллах. Металлы. Полупроводники. Диэлектрики.
- 41. Собственная и примесная проводимости полупроводников.
- 42. Образование и принцип работы р-п-перехода.
- 43. Диод.
- 44. Триод.
- 45. Солнечные элементы.
- 46. Состав радиоактивного излучения.
- 47. Протонно-нейтронная модель ядра.
- 48. Сильное взаимодействие нуклонов.
- 49. Состав и размер ядра.
- 50. Дефект массы, энергия связи нуклонов в ядре.
- 51. Закономерности α- и β-распада.
- 52. Слабое взаимодействие.
- 53. Гамма-излучение.
- 54. Закон радиоактивного распада.
- 55. Основные типы ядерных реакций.
- 56. Цепная реакция деления ядер.
- 57. Основные сведения о ядерной энергетике
- 58. Термоядерный синтез.
- 59. Проблемы управляемых термоядерных реакций.
- 60. Классификация элементарных частиц.
- 61. Античастицы.
- 62. Адроны и лептоны.
- 63. Закон сохранения лептонного заряда.
- 64. Классификация и структура адронов. Мезоны, барионы, гипероны.
- 65. Закон сохранения барионного заряда.
- 66. Кварки. Взаимодействие кварков. Глюоны.
- 67. Сравнительные характеристики четырех видов взаимодействия, существующих в природе

3 Методические материалы

Согласно пункту 12 рабочей программы.

3.1 Основная литература:

- 1. Савельев И.В. Курс общей физики: учебное пособие для втузов: В 3 т. 7-е изд., стереотип. СПб.: Лань, 2007.
 - **Т. 1:** Механика. Молекулярная физика. 432 с. (В библиотеке 155 экз.).
 - Т. 2: Электричество и магнетизм. Волны. Оптика. 496 с. (В библиотеке 148 экз.).
 - **Т. 3:** Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. 317 с. (В библиотеке 151 экз.).
- 2. Фриш С.Э., Тиморева А.В. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2009.
 - **Т. 1:** Физические основы механики. Молекулярная физика. Колебания и волны. 13-е изд., стереотип. СПб.: Лань, 2009. 480 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=416.
 - **Т. 2:** Электрические и электромагнетические явления. 12-е изд., стереотип. СПб.: Лань, 2009. 528 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=418.
 - **Т. 3:** Оптика. Атомная физика. 10-е изд., стереотип. СПб.: Лань, 2009. 656 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php? pl1_cid=25&pl1_id=419.
- 3. Зисман Г.А., Тодес О.М. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2007.
 - **Т. 1:** Механика. Молекулярная физика. Колебания и волны. 7-е изд. 352 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php? $pl1_cid=25\&pl1_id=505$.
 - **Т. 2:** Электричество и магнетизм. 7-е изд. 352 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=151 с компьютеров ТУСУР.
 - **Т. 3:** Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц. − 6-е изд. − 512 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=508.

3.2 Дополнительная литература:

- 1. Савельев И.В. Сборник вопросов и задач по общей физике. [Электронный ресурс] 5-е изд., стереотип. СПб.: Лань, 2016. 292 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=71766 с компьютеров ТУСУР.
- 2. Иродов И.Е. Механика. Основные законы. 8-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2006. 309 с. (В библиотеке 99 экз.).
- 3. Иродов И.Е. Физика макросистем. Основные законы. 3-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2006. 207 с. (В библиотеке 50 экз.).
- 4. Иродов И.Е. Электромагнетизм. Основные законы: Учебное пособие для вузов. 5-е изд. М.: БИНОМ. Лаборатория знаний, 2006. 319 с. (В библиотеке 101 экз.).
- 5. Иродов И.Е. Волновые процессы. Основные законы: учебное пособие. 3-е изд. М.: БИНОМ. Лаборатория знаний, 2006. 263 с. (В библиотеке 100 экз.).
- 6. Иродов И.Е. Квантовая физика. Основные законы: Учебное пособие для вузов. 2-е изд., доп. М.: БИНОМ. Лаборатория знаний, 2004. 256 с. (В библиотеке 100 экз.).
- 7. Иродов И.Е. Задачи по общей физике: Учебное пособие для вузов. 7-е изд., стереотип. М.: БИНОМ. Лаборатория знаний, 2007. 431 с. (В библиотеке 496 экз.).
- 8. Чертов А.Г., Воробьёв А.А. Задачник по физике: Учебное пособие для втузов. 8-е изд., перераб. и доп. М.: Физматлит, 2007. 640 с. (В библиотеке 99 экз.).
- 9. Волькенштейн В.С. Сборник задач по общему курсу физики: Учебное пособие для втузов. 12-е изд., испр. М.: Наука, 1990. 396 с. (В библиотеке 148 экз.).
- 10. Козырев А. В. Курс лекций по физике: Учебник. Томск: ТУСУР, 2007. 421 с. (В библиотеке 697 экз.).

- 11. Калашников Н.П., Кожевников Н.М. Физика. Интернет-тестирование базовых знаний. [Электронный ресурс] 1-е изд. СПб.: Лань, 2009. 160 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=172 с компьютеров ТУСУР.
- 12. Лозовский В.Н. Курс физики. В 2-х тт. [Электронный ресурс] 6-е изд., испр. и доп. СПб.: Лань, 2009.
 - **Т. 1:** Физические основы механики. Электричество и магнетизм. Физика колебаний и волн. 576 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=236.
 - **Т. 2:** Квантовая физика. Статистическая физика и термодинамика. Современная физическая картина мира. -608 с. Режим доступа on-line: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=239 с компьютеров ТУСУР.
 - 13. Савельев И.В. Курс общей физики. В 3-х тт. [Электронный ресурс] СПб.: Лань, 2011.
 - **Т. 1:** Механика. Молекулярная физика. 11-е изд., стереотип. СПб.: Лань, 2011. 432 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2038.
 - **Т. 2:** Электричество и магнетизм. Волны. Оптика. 11-е изд., стереотип. СПб.: Лань, 2011. 496 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2039.
 - **Т. 3:** Квантовая оптика. Атомная физика. Физика твёрдого тела. Физика атомного ядра и элементарных частиц. -10-е изд., стереотип. СПб.: Лань, 2011. -320 с. Режим доступа on-line с компьютеров ТУСУР: http://e.lanbook.com/books/element.php? pl1 cid=25&pl1 id=2040.

4. Учебно-методические пособия и программное обеспечение

- **4.1** Учебно-методические пособия для практических занятий и самостоятельной работы [Электронный ресурс]:
- 2.1. Чужков Ю.П. Работа и энергия. Законы сохранения в механике: сборник задач для практических занятий. Томск: ТУСУР, 2010. 24 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1100.
- 2.2. Лячин А.В., Магазинников А.Л., Троян Л.А. Молекулярная физика: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2009. 30 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1234.
- 2.3. Лячин А.В., Магазинников А.Л., Орловская Л.В. Термодинамика. Часть 1: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2009. 43 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1235.
- 2.4. Галеева А.И., Лячин А.В., Магазинников А.Л. Термодинамика. Часть 2: Сборник тестовых вопросов для самостоятельной работы и для практических занятий. 2010. 22 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1236.
- 2.5. Бурачевский Ю.А. Волновая оптика: Методическое пособие. Сборник тестовых вопросов. -2009. 24 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1233.
- 2.6. Чужков Ю.П. Элементы атомной физики и квантовой механики: Учебно-методическое пособие. Сборник тестовых вопросов. Томск: ТУСУР, 2011. 68 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/1104. Согласно пункту 12.3.3 рабочей программы.
- **4.2 Учебно-методические пособия для выполнения лабораторных работ** [Электронный ресурс]:
 - 3.1. Бурдовицин В.А., Троян Л.А. Динамика маятника Обербека: Методические указания к лабораторной работе. 2007. 13 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/918.

- 3.2. Бурдовицин В.А., Троян Л.А. Кинематика равноускоренного вращения: Методические указания к лабораторной работе. 2012. 13 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/923.
- 3.3. Бурачевский Ю.А. Изучение свойств диэлектриков в поле плоского конденсатора: Методические указания к лабораторной работе. 2012. 15 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/873.
- 3.4. Иванова Е. В. Изучение магнитного поля кругового тока: Методические указания к лабораторной работе. -2007. 12 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/863.
- 3.5. Бурачевский Ю.А. Определение удельного заряда электрона методом магнетрона: Методические указания к лабораторной работе. 2011. 14 с. Режим доступа для студентов, сотрудников ТУСУР: http://edu.tusur.ru/training/publications/864
- 3.6. Бурдовицин В.А., Троян Л.А. Изучение затухающих электромагнитных колебаний: Методические указания к лабораторной работе. 2007. 14 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/862.
- 3.7. Орловская Л.В. Изучение интерференции лазерного излучения: Методические указания к лабораторной работе. 2010. 9 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/911.
- 3.8. Федоров М. В., Бурдовицин В. А. Внешний фотоэффект. Изучение закона Столетова и проверка формулы Эйнштейна: Методические указания к лабораторной работе. 2009. 11 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/851.
- 3.9. Захаров Н.А., Кириллов А.М. Исследование спектра атома водорода: Методические указания к лабораторной работе. 2011. 18 с. Режим доступа свободный для скачивания: http://edu.tusur.ru/training/publications/917.