МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Проректор по УР

Документ подписан электронной подписью

Сертификат: a1119608-cdff-4455-b54e-5235117c185c Владелец: Сенченко Павел Васильевич Действителен: c 17.09.2019 по 16.09.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПРОЕКТИРОВАНИЕ ЭЛЕКТРОННОЙ КОМПОНЕНТНОЙ БАЗЫ МИКРОЭЛЕКТРОНИКИ И МИКРОСИСТЕМНОЙ ТЕХНИКИ

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Микроэлектроника и твердотельная электроника

Форма обучения: очная

Факультет: Факультет электронной техники (ФЭТ) Кафедра: Кафедра физической электроники (ФЭ)

Курс: **3** Семестр: **6**

Учебный план набора 2023 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	6 семестр	Всего	Единицы
Лекционные занятия	28	28	часов
Практические занятия	14	14	часов
Лабораторные занятия	16	16	часов
в т.ч. в форме практической подготовки	16	16	часов
Самостоятельная работа	50	50	часов
Подготовка и сдача экзамена	36	36	часов
Общая трудоемкость	144	144	часов
(включая промежуточную аттестацию)	4	4	3.e.

	Формы промежуточной аттестация	Семестр
Экзамен		6

1. Общие положения

1.1. Цели дисциплины

1. Приобретение теоретических и практических навыков необходимых при проектировании изделий микроэлектроники и микросистемной техники.

1.2. Задачи дисциплины

1. Изучить конструктивные особенности элементов гибридных и полупроводниковых интегральных схем, а также элементов микросистемной техники. Изучить основные этапы, а также набор конструкторской документации при проектировании гибридных и полупроводниковых интегральных схем, а также элементов микросистемной техники. Изучить материалы, применяемые при изготовлении гибридных и полупроводниковых интегральных схем, а также элементов микросистемной техники.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль направленности (профиля) (major).

Индекс дисциплины: Б1.В.02.10.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

таблица 5.1 Компетенции и индикаторы их достижения					
Компетенция	Индикаторы достижения	Планируемые результаты обучения по			
Компетенция	компетенции	дисциплине			
	Универсальные компетенции				
-	-	-			
	Общепрофессиональные компетенции				
-	-	-			
Профессиональные компетенции					

ПК-1. Способен	ПК-1.1. Знает основные	ZHOOT GOODH IS AVISHINGSING II
		Знает базовые физические и
строить простейшие	физические и	математические модели приборов и
физические и математические	математические модели электронных приборов и	устройств микроэлектроники и микросистемной техники различного
модели приборов, схем,	1 1 1	функционального назначения
устройств и установок	функционального	функционального назначения
электроники и	назначения	
наноэлектроники		2
различного	ПК-1.2. Знает основные	Знает перечень базовых программных
функционального	программные средства для	продуктов для расчета и моделирования
назначения, а также	физического и	приборов и устройств микроэлектроники и
использовать	математического	микросистемной техники различного
	моделирования	функционального назначения
программные средства	электронных приборов и	
их компьютерного	устройств различного	
моделирования	функционального	
моделирования	назначения	, , , , , , , , , , , , , , , , , , ,
	ПК-1.3. Умеет представлять	Умеет строить базовые физические и
	электронные приборы и	математические модели приборов и
	устройства в виде	устройств микроэлектроники и
	физических и	микросистемной техники различного
	математических моделей	функционального назначения
	ПК-1.4. Владеет	Владеет базовыми практическими
	практическими навыками	навыками работы в прикладном
	работы в прикладных	программном обеспечении,
	программах компьютерного	предназначенном для расчета и
	моделирования	моделирования приборов и устройств
		микроэлектроники и микросистемной
		техники различного функционального
		назначения
ПК-3. Способен к	ПК-3.1. Знает методологию	Знает базовые методики проведения
выполнению научно-	проведения научно-	научных исследований приборов и
исследовательских и	исследовательских и	устройств микроэлектроники и
опытно-	опытно-конструкторских	микросистемной техники различного
конструкторских работ	работ	функционального назначения
в области производства	ПК-3.2. Умеет составлять	Умеет выполнять простые научно-
изделий	техническое задание на	исследовательские и опытно-
микроэлектроники и	проведения научно-	конструкторские работы в области
твердотельной	исследовательских и	производства приборов и устройств
электроники	опытно-конструкторских	микроэлектроники и микросистемной
	работ	техники различного функционального
		назначения
	ПК-3.3. Владеет навыками	Владеет базовыми методиками
	составления рабочего плана	планирования и проведения научно-
	на проведения научно-	исследовательских и опытно-
	исследовательских и	конструкторских работ в области
	опытно-конструкторских	производства приборов и устройств
	работ	микроэлектроники и микросистемной
		техники различного функционального
		назначения

ПИ С С	ПИ (1 2	2
ПК-6. Способен	ПК-6.1. Знает принципы	Знает базовые этапы проектирования и
владеть современными	проектирования изделий	конструирования приборов и устройств
методами расчета и	электронной техники	микроэлектроники и микросистемной
проектирования		техники различного функционального
изделий		назначения
микроэлектроники и	ПК-6.2. Умеет рассчитывать	Умеет рассчитывать базовые параметры и
твердотельной	параметры и	характеристики приборов и устройств
электроники,	характеристики приборов и	микроэлектроники и микросистемной
способностью к	устройств	техники различного функционального
восприятию,	микроэлектроники и	назначения
разработке и	твердотельной электроники	
критической оценке	ПК-6.3. Владеет навыками	Владеет навыками работы в базовых
новых способов их	работы в прикладных	прикладных программах для расчета и
проектирования	программах для расчета и	проектирования приборов и устройств
	проектирования	микроэлектроники и микросистемной
	электронных устройств	техники различного функционального
		назначения

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Виды учебной деятельности		Семестры
		6 семестр
Контактная аудиторная работа обучающихся с преподавателем, всего	58	58
Лекционные занятия	28	28
Практические занятия	14	14
Лабораторные занятия	16	16
Самостоятельная работа обучающихся, в т.ч. контактная	50	50
внеаудиторная работа обучающихся с преподавателем, всего		
Подготовка к тестированию	14	14
Подготовка к контрольной работе	12	12
Подготовка к лабораторной работе, написание отчета	24	24
Подготовка и сдача экзамена	36	36
Общая трудоемкость (в часах)	144	144
Общая трудоемкость (в з.е.)	4	4

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

Названия разделов (тем) дисциплины	Лек. зан., ч	Прак. зан., ч	Лаб. раб.	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
6 семестр						
1 Введение	2	-	-	2	4	ПК-1

2 Конструкции и расчет элементов тонкопленочных гибридных микросхем	4	8	4	16	32	ПК-1, ПК-3, ПК-6
3 Проектирование топологии тонкопленочных гибридных микросхем	4	6	8	12	30	ПК-1, ПК-3, ПК-6
4 Конструкции и расчет элементов толстопленочных гибридных микросхем	4	-	4	8	16	ПК-1, ПК-3, ПК-6
5 Проектирование топологии толстопленочных гибридных микросхем	6	-	-	2	8	ПК-1, ПК-6
6 Основные элементы топологии полупроводниковых микросхем	4	-	-	8	12	ПК-1, ПК-3, ПК-6
7 Конструкции элементов микросистем	4	-	-	2	6	ПК-1, ПК-6
Итого за семестр	28	14	16	50	108	
Итого	28	14	16	50	108	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2. Таблица 5.2 — Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции
	6 семестр		
1 Введение	Основные проблемы и задачи курса.	2	ПК-1
	Классификация микросхем по		
	функциональным, структурным и		
	конструкторско-технологическим		
	признакам. Система условных		
	обозначений микросхем. Маркировка.		
	Итого	2	
2 Конструкции и	Типы подложек. Конструкции и расчет	4	ПК-1, ПК-6
расчет элементов	тонкопленочных резисторов. Конструкции		
тонкопленочных	и расчет тонкопленочных конденсаторов.		
гибридных	Конструкции резисторов и конденсаторов		
микросхем	с лавной и ступенчатой подгонкой		
	номиналов. Конструкции и расчет		
	тонкопленочных индуктивностей. Расчет		
	пленочных проводников и контактных		
	площадок. Конструкции навесных		
	компонентов. Конструкции и расчет СВЧ		
	ГИС.		
	Итого	4	

	1		
3 Проектирование	Особенности топологии тонкопленочных	4	ПК-1, ПК-6
топологии	гибридных ИС и этапы ее расчета и		
тонкопленочных	проектирования. Паразитные связи в		
гибридных	гибридных микросхемах. Расчет теплового		
микросхем	режима гибридной микросхемы. Расчет		
Микросхем	= = =		
	зон теплового влияния. Герметизация		
	ИМС. Требования к герметизации. Типы		
	корпусов. Разварка корпуса. Способы		
	разварки. Герметизация корпусов,		
	способы. Контроль герметизации		
	корпусов. Конструкторская документация.		
	Итого	4	
4 V oxyompy yevyyyy yy		4	пу т пу с
4 Конструкции и	Типы подложек толстопленочных	4	ПК-1, ПК-6
расчет элементов	гибридных микросхем. Конструкции и		
толстопленочных	расчет толстопленочных резисторов.		
гибридных	Конструкции и расчет толстопленочных		
микросхем	конденсаторов. Расчет пленочных		
	проводников и контактных площадок.		
	Конструкции навесных компонентов.		
	Итого	4	
5 П			HIC 1 HIC C
5 Проектирование	Особенности топологии толстопленочных	6	ПК-1, ПК-6
топологии	гибридных ИС и этапы ее проектирования.		
толстопленочных	Подгонка номиналов элементов. Расчет		
гибридных	теплового режима гибридной микросхемы.		
микросхем	Расчет зон теплового влияния.		
_	Герметизация ИМС. Требования к		
	герметизации. Типы корпусов. Разварка		
	корпуса. Способы разварки. Герметизация		
	корпусов, способы. Контроль		
	= = =		
	герметизации корпусов. Конструкторская		
	документация.		
	Итого	6	
6 Основные элементы	Подложки полупроводниковых ИМС.	4	ПК-1, ПК-3,
топологии	Основные элементы реализуемые в		ПК-6
полупроводниковых	полупроводниковой ИМС. Топологии		
микросхем	базовых элементов полупроводниковых		
инкроежени 	ИМС. Базовые методики исследования		
	основных параметров и характеристик		
	полупроводниковых ИМС		
	Итого	4	
7 Конструкции	Микроэлектромеханические системы	4	ПК-1, ПК-6
элементов	(МЭМС). Фотонные кристаллы. Датчики.		
микросистем	Сенсоры. Биочипы. Биореакторы.		
1	«Лаборатория на кристалле».		
	Итого	4	
	Итого за семестр	28	
	Итого	28	

5.3. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.3. Таблица 5.3. – Наименование практических занятий (семинаров)

Названия разделов (тем) дисциплины	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	6 семестр		
2 Конструкции и расчет элементов	Расчет конструкции тонкопленочных резисторов	4	ПК-1, ПК-6
тонкопленочных гибридных микросхем	Расчет конструкции тонкопленочных конденсаторов	4	ПК-1, ПК-6
	Итого	8	
3 Проектирование топологии	Расчет паразитных связей в гибридных микросхемах	2	ПК-1, ПК-6
тонкопленочных гибридных микросхем	Расчет тепловых режимов элементов гибридных микросхем	4	ПК-1, ПК-6
	Итого	6	
	Итого за семестр		
	Итого	14	

5.4. Лабораторные занятия

Наименование лабораторных работ приведено в таблице 5.4. Таблица 5.4 — Наименование лабораторных работ

,	зание лаоораторных раоот		1
Названия разделов (тем)	Наименование лабораторных	Трудоемкость,	Формируемые
дисциплины	работ	Ч	компетенции
	6 семестр		
2 Конструкции и расчет	Определение погрешности	4	ПК-1, ПК-3, ПК-6
элементов тонкопленочных	изготовления тонкопленочного		
гибридных микросхем	резистора		
	Итого	4	
3 Проектирование	Конструкция и определение	4	ПК-1, ПК-3, ПК-6
топологии тонкопленочных	параметров тонкопленочного		
гибридных микросхем	конденсатора		
	Конструкции и определение	4	ПК-1, ПК-3, ПК-6
	параметров подгоняемых		
	резисторов и конденсаторов		
	Итого	8	
4 Конструкции и расчет	Определение параметров	4	ПК-1, ПК-3, ПК-6
элементов толстопленочных	диффузионных р-п переходов		
гибридных микросхем	Итого	4	
	Итого за семестр	16	
	Итого	16	

5.5. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

-	, , , , , , , , , , , , , , , , , , , ,	__	. / 1 / ' '	1 1 1 /	· · · · · · · · · · · · · · · · · · ·
	Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость, ч	Формируемые компетенции	Формы контроля

	6 ce	местр		
1 Введение	Подготовка к тестированию	2	ПК-1	Тестирование
	Итого	2		
2 Конструкции и расчет элементов	Подготовка к тестированию	2	ПК-1, ПК-3, ПК-6	Тестирование
тонкопленочных гибридных микросхем	Подготовка к контрольной работе	8	ПК-1, ПК-6	Контрольная работа
	Подготовка к лабораторной работе, написание отчета	6	ПК-1, ПК-3, ПК-6	Лабораторная работа
	Итого	16		
3 Проектирование топологии	Подготовка к тестированию	2	ПК-1, ПК-3, ПК-6	Тестирование
тонкопленочных гибридных микросхем	Подготовка к контрольной работе	4	ПК-1, ПК-6	Контрольная работа
	Подготовка к лабораторной работе, написание отчета	6	ПК-1, ПК-3, ПК-6	Лабораторная работа
	Итого	12		
4 Конструкции и расчет элементов	Подготовка к тестированию	2	ПК-1, ПК-3, ПК-6	Тестирование
толстопленочных гибридных микросхем	Подготовка к лабораторной работе, написание отчета	6	ПК-1, ПК-3, ПК-6	Лабораторная работа
	Итого	8		
5 Проектирование топологии	Подготовка к тестированию	2	ПК-1, ПК-6	Тестирование
толстопленочных гибридных микросхем	Итого	2		
6 Основные элементы топологии	Подготовка к тестированию	2	ПК-1, ПК-3, ПК-6	Тестирование
полупроводниковых микросхем	Подготовка к лабораторной работе, написание отчета	6	ПК-1, ПК-3, ПК-6	Лабораторная работа
	Итого	8		
7 Конструкции элементов микросистем	Подготовка к тестированию	2	ПК-1, ПК-6	Тестирование
	Итого	2		
	Итого за семестр	50		
	Подготовка и сдача экзамена	36		Экзамен
	Итого	86		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.7.

Таблица 5.7 – Соответствие компетенций, формируемых при изучении дисциплины, и видов

занятий

Формануомило	Виды учебной деятельности			ности	
Формируемые компетенции	Лек.	Прак.	Лаб.	Сам.	Формы контроля
компетенции	зан.	зан.	раб.	раб.	
ПК-1 + + + +		+	Контрольная работа, Лабораторная		
					работа, Тестирование, Экзамен
ПК-3	+ + +		+	Лабораторная работа, Тестирование,	
					Экзамен
ПК-6	+	+	+	+	Контрольная работа, Лабораторная
					работа, Тестирование, Экзамен

6. Рейтинговая система для оценки успеваемости обучающихся

6.1. Балльные оценки для форм контроля

Балльные оценки для форм контроля представлены в таблице 6.1.

Таблица 6.1 – Балльные оценки

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр			
	6 семестр						
Контрольная работа	10	10	10	30			
Лабораторная работа	0	10	10	20			
Тестирование	5	5	10	20			
Экзамен				30			
Итого максимум за	15	25	30	100			
период							
Нарастающим итогом	15	40	70	100			

6.2. Пересчет баллов в оценки за текущий контроль

Пересчет баллов в оценки за текущий контроль представлен в таблице 6.2.

Таблица 6.2 – Пересчет баллов в оценки за текущий контроль

Баллы на дату текущего контроля		
\geq 90% от максимальной суммы баллов на дату ТК		
От 70% до 89% от максимальной суммы баллов на дату ТК		
От 60% до 69% от максимальной суммы баллов на дату ТК		
< 60% от максимальной суммы баллов на дату ТК	2	

6.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 6.3.

Таблица 6.3 – Пересчет суммы баллов в традиционную и международную оценку

	Итоговая сумма баллов,	
Оценка	учитывает успешно сданный	Оценка (ECTS)
	экзамен	
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (хорошо) (зачтено)	85 – 89	В (очень хорошо)
	75 – 84	С (хорошо)
	70 – 74	D (удовлетворительно)

3 (удовлетворительно) (зачтено)	65 – 69	
	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

- 1. Проектирование и конструирование интегральных микросхем: учебное пособие / А. А. Жигальский; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра физической электроники. Томск: ТУСУР, 2007. 195 с (наличие в библиотеке ТУСУР 50 экз.).
- 2. Технология и конструкции микросхем, микропроцессоров и микросборок : Учебник для вузов / Л. А. Коледов. М. : Радио и связь, 1989. 400 с. (наличие в библиотеке ТУСУР 48 экз.).
- 3. Терехов, А. И. Технологические основы изготовления интегральных микросхем: учебное пособие / А. И. Терехов, И. А. Тихомирова. Иваново: ИГЭУ, 2018. 116 с [Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/154591.

7.2. Дополнительная литература

- 1. Справочное пособие по конструированию микросхем: справочное издание / Э. А. Матсон, Д. М. Крыжановский. Минск: Вышэйшая школа, 1982. 224 с. (наличие в библиотеке ТУСУР 51 экз.).
- 2. Конструкции и технология микросхем: Учебное пособие для вузов / Э. А. Матсон. Минск: Вышэйшая школа, 1985. 206 с (наличие в библиотеке ТУСУР 49 экз.).
- 3. Введение в системы автоматизированного проектирования интегральных микросхем: учебно-методическое пособие / составители А. В. Тучин [и др.]. Воронеж: ВГУ, 2017 Часть 1 2017. 111 с [Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/154768.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Проектирование и конструирование интегральных микросхем: Учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе для студентов специальности 210104 "Микроэлектроника и твердотельная электроника" / А. А. Жигальский; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра физической электроники. Томск: ТУСУР, 2007. 40 с (наличие в библиотеке ТУСУР 51 экз.).
- 2. Микроэлектроника : методические указания по выполнению лабораторных работ по курсу микроэлектроника для студентов специальности 210104 "Микроэлектроника и твердотельная электроника" / А А. Жигальский ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра физической электроники. Томск : ТУСУР, 2007. 71 с (наличие в библиотеке ТУСУР 30 экз.).

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Учебная аудитория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 222 ауд.

Описание имеющегося оборудования:

- Компьютер Intel(R) Core (TM)2 CPU;
- Проектор Benq;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория технологии интегральных схем: учебная аудитория для проведения занятий лабораторного типа; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 116 ауд.

Описание имеющегося оборудования:

- Установка вакуумного напыления УРМ-3 (2 шт.);
- Установка вакуумного напыления УВН-2М-1;
- Установка вакуумного напыления ВУП-5;
- Насос Вакуумный 2 НВР-5ДМ;
- Вакуумметр ВИТ-2;
- Источник питания УИП-2 (2 шт.);
- Измеритель иммитанса Е7-20;
- Источник питания НҮ 3003;
- Микроскоп ММУ-3;
- Микроскоп МИИ-4;
- Микроскоп МБС-9;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;

- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с **нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения лиспиплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем)	Формируемые	1	
дисциплины	компетенции	Формы контроля	Оценочные материалы (ОМ)
1 Введение	ПК-1	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
2 Конструкции и расчет элементов тонкопленочных гибридных микросхем	ПК-1, ПК-3, ПК-6	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов

3 Проектирование топологии тонкопленочных гибридных микросхем	ПК-1, ПК-3, ПК-6	Контрольная работа	Примерный перечень вариантов (заданий) контрольных работ
		Лабораторная работа	Темы лабораторных работ
		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
4 Конструкции и расчет элементов толстопленочных	ПК-1, ПК-3, ПК-6	Лабораторная работа	Темы лабораторных работ
гибридных микросхем		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
5 Проектирование топологии толстопленочных гибридных	ПК-1, ПК-6	Тестирование	Примерный перечень тестовых заданий
микросхем		Экзамен	Перечень экзаменационных вопросов
6 Основные элементы топологии	ПК-1, ПК-3, ПК-6	Лабораторная работа	Темы лабораторных работ
полупроводниковых микросхем		Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
7 Конструкции элементов микросистем	ПК-1, ПК-6	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

		Формулировка требований к степени сформированно				
Оценка Баллы за ОМ		планируемых результатов обучения				
		знать	уметь	владеть		
2	< 60% от	отсутствие знаний	отсутствие	отсутствие		
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или		
	суммы баллов	знания	частично	фрагментарные		
			освоенное	применение		
			умение	навыков		
3	от 60% до	общие, но не	в целом успешно,	в целом		
(удовлетворительно)	69% от	структурированные	но не	успешное, но не		
	максимальной	знания	систематически	систематическое		
	суммы баллов		осуществляемое	применение		
			умение	навыков		

4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% от	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

· ·	ала комплексной оценки сформированности компетенции
Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	или
	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на
	репродуктивном уровне, указывать на особенности и взаимосвязи
	изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает
	изученный элемент содержания системно, произвольно и доказательно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях, учитывая и указывая связи и зависимости между этим
	элементом и другими элементами содержания дисциплины, его
	значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. Какие из резистивных материалов применяются при изготовлении высокоомных резисторов?
 - а) керметы
 - б) сплавы
 - в) чистые металлы
- 2. Какому классу чистоты должны соответствовать подложки, применяемые в тонкопленочной технологии?
 - a) 14
 - б) 10
 - B) 8
- 3. Какие из резистивных материалов не применяется при изготовлении термостабильных резисторов?
 - а) керметы
 - б) сплавы
 - в) чистые металлы

- 4. Если шаг координатографа 1 мм, а масштаб 10:1, то какой будет топологическая ширина резистора, если bтехн=300 мкм, bточн=305 мкм, bp=350 мкм?
 - а) 350 мкм
 - б) 300 мкм
 - в) 400 мкм
- 5. С определения какого параметра начинается расчет резистора с коэффициентом формы 10>Кф>1?
 - а) с расчета ширины резистора, b
 - б) с расчета длины резистора, 1
 - в) с расчета мощности резистора, Р
- 6. При плавной подгонке сопротивления какой из надрезов обеспечивает «грубую»/ «плавную» подгонку?
 - а) вдоль/поперек
 - б) поперек/вдоль
 - в) под углом
- 7. Максимальная толщина диэлектрической пленки для тонкопленочных конденсаторов составляет?
 - а) 1 мкм
 - б) 0,1 мкм
 - в) 10 мкм
- 8. Какому классу чистоты должны соответствовать подложки, применяемые в полупроводниковых ИМС?
 - a) 14
 - б) 10
 - в) 8
- 9. Какие виды изоляции относятся к комбинированному способу?
 - а) изопланарная технология
 - б) полипланарная технология
 - в) эпипланарная технология
 - г) декаль метод
 - д) метод балочных выводов
 - е) коллекторная изолирующая диффузия
- 10. Какая из операций по формированию полупроводниковой ИМС выполняется самой первой, при условии использования подложки с эпитаксиальным слоем?
 - а) формирование изолированных областей
 - б) формирование базы транзисторов
 - в) формирование эмиттеров транзисторов
 - г) формирование защитного слоя
 - д) формирование металлизации

9.1.2. Перечень экзаменационных вопросов

- 1. Подложки ГИС. Назначение. Требования к материалу подложек. Материалы подложек ГИС.
- 2. Материалы пленок тонкопленочных ИМС.
- 3. Конфигурации тонкопленочных резисторов. Расчет конструкции тонкопленочных резисторов.
- 4. Конструкции тонкопленочных резисторов с подгонкой сопротивления.
- 5. Конструкции пленочных конденсаторов. Ограничения при проектировании пленочных конденсаторов. Расчет пленочного конденсатора.
- 6. Конструкции подгоняемых тонкопленочных конденсаторов. Материалы тонкопленочных конденсаторов. Требования к материалам тонкопленочных конденсаторов.
- 7. Конструкции пленочных индуктивностей. Номиналы индуктивностей. Способы повышения номиналов индуктивностей.
- 8. Конструкции тонкопленочных распределенных RC-структур.
- 9. Навесные элементы ГИС.
- 10. Особенности проектирования СВЧ ГИС. Элементы СВЧ ГИС.

- 11. Характеристика основных этапов проектирования топологии.
- 12. Основные технологические операции изготовления толстопленочных гибридных микросхем.
- 13. Расчет конструкции толстопленочных резисторов.
- 14. Основные этапы теплового расчета ГИС. Зоны теплового влияния. Расчет зон теплового влияния.
- 15. Герметизация ИМС. Требования к герметизации. Типы корпусов.
- 16. Корпуса. Разварка корпуса. Способы разварки.
- 17. Корпуса. Герметизация корпусов сваркой.
- 18. Корпуса. Герметизация корпуса пайкой.
- 19. Корпуса. Бескорусная герметизация. Герметизация пластмассой.
- 20. Корпуса. Контроль герметизации корпусов.
- 21. Подложки полупроводниковых ИМС. Система условных обозначений полупроводниковых пластин.
- 22. Диэлектрические подложки полупроводниковых ИМС. Основные требования предъявляемые к материалу подложек. Система условных обозначений. Материалы для подложек.
- 23. Виды элементов, реализуемых в полупроводниковой технологии и способы их создания.
- 24. Интегральные транзисторы n-p-n. Конструкция, с указанием глубин залегания диффузионных областей. Этапы создания диффузионных областей транзистора, требования к их концентрации и размерам областей.
- 25. Интегральные транзисторы p-n-p. Конструкции p-n-p транзисторов. Основные недостатки p-n-p транзисторов и способы их устранения.
- 26. Многоэмиттерные транзисторы n-p-n. Конструкции, назначение. Основные проблемы при конструировании и способы их устранения.
- 27. Многоколлекторные транзисторы n-p-n. Конструкции, назначение, Основные проблемы при конструировании и способы их устранения.
- 28. Интегральная инжекционная логика И2Л с горизонтальным и вертикальным инжектором. Основные достоинства. Назначение.
- 29. Инжекционно-полевая логика ИПЛ.
- 30. Интегральные диоды. Конструкции. Проблемы при создании интегральных диодов и способы их решения. Параметры диодов при различных конструкциях.
- 31. Диоды Шотки. Технологические трудности при создании диодов Шоттки и способы их решения. Материалы, используемые при изготовлении диодов Шоттки.
- 32. Транзисторы с диодами Шотки. Конструкции, назначение.
- 33. Интегральные резисторы. Конструкции, параметры.
- 34. Интегральные конденсаторы. Конструкции, параметры.
- 35. Методы изоляции элементов ИМС. Диодная изоляция.
- 36. Методы изоляции элементов ИМС. Коллекторная изолирующая диффузия.
- 37. Методы изоляции элементов ИМС. Базовая изолирующая диффузия.
- 38. Методы изоляции элементов ИМС. Метод самоизоляции п-областью.
- 39. Методы изоляции элементов ИМС. Изоляция тонкой пленкой диэлектрика.
- 40. Методы изоляции элементов ИМС. Декаль-метод.
- 41. Методы изоляции элементов ИМС. Метод балочных выводов.
- 42. Методы изоляции элементов ИМС. Метод кремний на сапфире.
- 43. Методы изоляции элементов ИМС. Изопланар.
- 44. Методы изоляции элементов ИМС. Полипланар.
- 45. Разработка топологии ИМС. Правила проектирования изолированных областей.
- 46. Разработка топологии ИМС. Правила размещения элементов ИМС на площади кристалла.
- 47. Интегральные микросхемы на МДП-транзисторах. Типы МДП-транзисторов. Комплементарная пара.
- 48. Запоминающие устройства на МДП-транзисторах.
- 49. Базовый матричный кристалл.

9.1.3. Примерный перечень вариантов (заданий) контрольных работ

Вариант 1. Рассчитать размеры тонкопленочных резисторов. $\gamma_{os}=2\%$, $\gamma_{Rcr}=1\%$, $\gamma_{R\kappa}=1\%$.

		Поминан	Попуск	Мощность	Диапазон	Шаг	Метод	
	Резистор	Номинал, Ом	Допуск, %	рассеяния,	температур,	координатной	изготовления/	
1.		ОМ	70	мВт	°C	сетки, мм	масштаб	
	R1	600	10	10			Φ	
	R2	10000	10	15	$-60 \div +55$	0.5	Масштаб	
	R3	125000	15	10			10:1	

Вариант 9. Рассчитать размеры тонкопленочных резисторов. $\gamma_{os}=2\%$, $\gamma_{Rct}=1\%$, $\gamma_{Rk}=1\%$.

	Резистор	Номинал, Ом	Допуск, %	Мощность рассеяния,	Диапазон температур,	Шаг координатной	Метод изготовления/ масштаб
2.	R1	800	7	мВт 10	30	сетки, мм	Φ
	R2	5500	7	25	-30 ÷ +99	0.5	Масштаб
	R3	80000	15	15			10:1

Вариант 1. Рассчитать размеры тонкопленочных конденсаторов. γ_{C0} =4%, γ_{Ccr} =1%,

		Номинал, пФ	Частота, МГи	Допуск,	Рабочее	Диапазон	Шаг	Метод	
					напряжение	температур,	координатной	изготовления/	
3.		пФ	МПЦ	70	В	°C	сетки, мм	масштаб	
٥.	C1	80		15	10			M	
	C2	240	5	15	10	$-60 \div +70$	-60 ÷ +70	1	Масштаб
	C3	650		15	15			10:1	

Вариант 10. Рассчитать размеры тонкопленочных конденсаторов. γ_{C0} =4%, $\gamma_{Cc\tau}$ =1%,

				1			, ,	
		Номинал, пФ	Частота, МГи	Допуск,	Рабочее	Диапазон	Шаг	Метод
				допуск, %	напряжение	температур,	координатной	изготовления/
4.		пФ	МПЦ	70	В	°C	сетки, мм	масштаб
	C1	1200		15	10			M
	C2	1600	1	15	15	$-60 \div +85$	1	Масштаб
	C3	2000		15	15			10:1

Вариант №1 Произвести тепловой расчет и рассчитать зоны теплового влияния для следующих элементов:

	Элемент	1, мм	b, мм	Рэ, мВт	Rт внут, град/Вт	Тмах,°С
	R1	1,5	0,6	15		125
	R2	2	0,8	10		125
_	R3	0,8	1,7	15		125
5.	R4	1,1	0,5	15		125
	VT1	1	1	15	600	85

Элементы размещены на плате размером 10х15 мм и толщиной 0,45 мм. Конструктивный вариант ИМС- вариант 4 со следующими параметрами: $h_{\kappa l}$ =100 мкм, $h_{\kappa 2}$ =500 мкм, $\lambda \kappa_{l}$ =0,5 Bt/(м*град), $\lambda \kappa_{l}$ =0,5 Bt/(м*град). Транзистор VT1 расположен на резисторе R2. Температура окружающей среды Токр.ср.=-60 \div +60°C. Результаты расчета привести в виде таблицы:

Вариант №11 Произвести тепловой расчет и рассчитать зоны теплового влияния для следующих элементов:

	Элемент	l, mm	b, мм	Рэ, мВт	Rт внут, град/Вт	Тмах,°С
	R1	1,3	0,4	10		125
	R2	1,8	0,6	15		125
	R3	0,8	1,7	10		125
6.	R4	1,1	0,5	25		125
	VT1	1,1	1,1	18	720	85

Элементы размещены на плате размером 10x15 мм и толщиной 0,7 мм. Конструктивный вариант ИМС- **вариант 3** со следующими параметрами: $h_{\kappa l}$ =100 мкм, $h_{\kappa 2}$ =100 мкм, $\lambda \kappa_{l}$ =0,5 BT/(м*град), $\lambda \kappa_{l}$ =0,5 BT/(м*град). Транзистор VT1 расположен на резисторе R1. Температура окружающей среды Токр.ср.=-60 \div +55°C. Результаты расчета привести в виде таблицы:

9.1.4. Темы лабораторных работ

- 1. Определение погрешности изготовления тонкопленочного резистора
- 2. Конструкция и определение параметров тонкопленочного конденсатора
- 3. Конструкции и определение параметров подгоняемых резисторов и конденсаторов

4. Определение параметров диффузионных p-n переходов

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

Конспектирование студентами лекционного материала обязательно. Обязательным условие допуска к экзамену является выполнение и защита всех лабораторных работ, а также написание контрольных работ на положительную оценку

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

osmonino timini odekezzu ii mizmindez					
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения			
С нарушениями слуха	Тесты, письменные	Преимущественно письменная			
	самостоятельные работы, вопросы	проверка			
	к зачету, контрольные работы				
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная			
	зачету, опрос по терминам	проверка (индивидуально)			
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно			
двигательного аппарата	контрольные работы, письменные	дистанционными методами			
	самостоятельные работы, вопросы				
	к зачету				

С ограничениями по	Тесты, письменные	Преимущественно проверка
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися
показаниям	к зачету, контрольные работы,	исходя из состояния
	устные ответы	обучающегося на момент
		проверки

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ФЭ протокол № 140 от «31 » _ 1 _ 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ФЭ	П.Е. Троян	Согласовано, 1c6cfa0a-52a6-4f49- aef0-5584d3fd4820
Заведующий обеспечивающей каф. ФЭ	П.Е. Троян	Согласовано, 1c6cfa0a-52a6-4f49- aef0-5584d3fd4820
И.О. начальника учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. ФЭ	В.В. Каранский	Согласовано, c2e55ae8-0332-4ed9- a65a-afbb92539ee8
Заведующий кафедрой, каф. ФЭ	П.Е. Троян	Согласовано, 1c6cfa0a-52a6-4f49- aef0-5584d3fd4820
РАЗРАБОТАНО:		
Профессор, каф. ФЭ	Ю.В. Сахаров	Разработано, dd1f7cbe-1ce6-48e6- b40d-074633a5bd8a