МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Директор департамента науки и инноваций

Документ подписан электронной подписью Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ

Оптические и оптико-электронные приборы и комплексы

Уровень образования: высшее образование - подготовка кадров высшей квалификации Направление подготовки / специальность: 12.06.01 Фотоника, приборостроение, оптические и биотехнические системы и технологии

Направленность (профиль) / специализация: **Оптические и оптико-электронные приборы и комплексы**

Форма обучения: заочная

Факультет: **ФЭТ, Факультет электронной техники** Кафедра: **ЭП, Кафедра электронных приборов**

Курс: **2**, **3** Семестр: **4**, **5**

Учебный план набора 2017 года

Распределение рабочего времени

№	Виды учебной деятельности	4 семестр	5 семестр	Всего	Единицы
1	Лекции	6	0	6	часов
2	Практические занятия	2	4	6	часов
3	Всего аудиторных занятий	8	4	12	часов
4	Самостоятельная работа	60	32	92	часов
5	Всего (без экзамена)	68	36	104	часов
6	Подготовка и сдача экзамена / зачета	4	36	40	часов
7	Общая трудоемкость	72	72	144	часов
				4.0	3.E.

Дифференцированный зачет: 4 семестр

Экзамен: 5 семестр

Томск 2018

Рассмотрена	и одо	брена на за	седании	кафедры
протокол №	66	от « <u>20</u> »	4	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

	- ·	COBINIBI
говки мы и т	ого образовательного стандарта высшего об (специальности) 12.06.01 Фотоника, приборо	а с учетом требований федерального государ разования (ФГОС ВО) по направлению подгостроение, оптические и биотехнические систерассмотрена и одобрена на заседании кафедр. —.
	Разработчик:	
	профессор каф. ЭП	Н. И. Буримов
	Заведующий обеспечивающей каф	С. М. Шандаров
	Рабочая программа дисциплины согласована	с факультетом и выпускающей кафедрой:
	Декан ФЭТ	А. И. Воронин
	Заведующий выпускающей каф	С. М. Шандаров
	Эксперты:	
	Заведующий аспирантурой	Т.Ю. Коротина
	Профессор кафедры электронных приборов (ЭП)	Л. Н. Орликов

1. Цели и задачи дисциплины

1.1. Цели дисциплины

углубленное освоение теоретических и методологических основ оптики, как технической науки, для их использования в инновационной деятельности в сфере науки, образования, техники, производства;

организация работы по подготовке к сдаче кандидатского экзамена по специальной дисциплине по специальности 05.11.07 - Оптические и оптико-электронные приборы и комплексы в соответствии с Номенклатурой специальностей научных работников, утвержденной приказом Минобрнауки России № 59 от 25.02.2009 г.

1.2. Задачи дисциплины

- углубление необходимых в профессиональной деятельности знаний по оптическим и оптико-электронным приборам и комплексам и по подходам и математическим моделям, используемым при разработке исследовательских, измерительных, коммуникационных и технологических приборов, систем и комплексов, использующих оптический диапазон электромагнитных волн;
- получение и углубление знаний по инженерным аспектам создания новых методов и аппаратуры для физических исследований с использованием оптического излучения, высокоточных измерений, средств передачи и обработки информации, обработки материалов и решения других задач народно-хозяйственного и оборонного назначения, требующих использования оптической и оптико-электронной техники.

2. Место дисциплины в структуре ОПОП

Дисциплина «Оптические и оптико-электронные приборы и комплексы» (Б1.В.ОД.1) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Оптические и оптико-электронные приборы и комплексы, Оптические и оптико-электронные приборы и комплексы, Методы управления оптическим излучением, Основы организации научных исследований, Теория систем и системный анализ, Фотоника, приборостроение, оптические и биотехнические системы и технологии.

Последующими дисциплинами являются: Оптические и оптико-электронные приборы и комплексы, Оптические и оптико-электронные приборы и комплексы, Подготовка к сдаче и сдача государственного экзамена, Подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук (рассред.).

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-3 владение методикой разработки математических и физических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере;
- ПК-3 Способность к исследованию и разработке новых методов, приборов и систем управления оптическим излучением, предназначенных как для физических исследований и проведения высокоточных измерений, так и для создания оптико-электронных систем и комплексов;
- ПК-4 Способность к исследованию и разработке новых методов, приборов и систем, использующих электромагнитное излучение оптического диапазона для анализа параметров физических полей;

В результате изучения дисциплины обучающийся должен:

- знать физические основы оптики, основные законы и понятия прикладной оптики, подходы к созданию оптических и оптико-электронных приборов, систем и комплексов различного назначения, принципы построения и функционирования оптических и оптико-электронных элементов, систем и приборов; основы метрологии применительно к оптическим измерениям, принципы приема и преобразования сигналов в оптических и оптико-электронных приборах и комплексах, методы и подходы, используемые при проектировании оптических и оптико-электронных приборов и комплексов; основы технологии оптического и оптико-электронного приборостроения, основные классы и типы современных оптических и оптико-электронных приборов и комплексов различного назначения
 - уметь определять и обосновывать выбор схемы построения оптических и оптико-элек-

тронных приборов и комплексов, а также методов расчета, проектирования и технологии изготовления деталей, узлов и элементов и оптических и оптико-электронных приборов и комплексов в целом

- владеть методами математического моделирования и инженерного проектирования деталей, узлов и элементов и оптических и оптико-электронных приборов и комплексов в целом; методами сборки, юстировки и контроля в процессе изготовления типовых деталей, узлов и оптических и оптико-электронных приборов и комплексов в целом; методиками оптических измерений и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем в различных диапазонах оптической области спектра

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры	
		4 семестр	5 семестр
Аудиторные занятия (всего)	12	8	4
Лекции	6	6	0
Практические занятия	6	2	4
Самостоятельная работа (всего)	92	60	32
Проработка лекционного материала	11	11	0
Самостоятельное изучение тем (вопросов) теоретической части курса	66	42	24
Подготовка к практическим занятиям, семинарам	15	7	8
Всего (без экзамена)	104	68	36
Подготовка и сдача экзамена / зачета	40	4	36
Общая трудоемкость, ч	144	72	72
Зачетные Единицы	4.0		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Сам. раб., ч	Всего часов (без экзамен а)	Формируемые компетенции	
4 семестр						
1 Современное состояние и перспективы развития оптического и оптико-электронного приборостроения	1	0	7	8	ОПК-3, ПК-3, ПК-4	
2 Основы оптики	2	0	10	12	ОПК-3, ПК-3, ПК-4	
3 Прикладная оптика	1	0	14	15	ОПК-3, ПК-3, ПК-4	

4 Источники и приемники оптического излучения	1	1	14	16	ОПК-3, ПК-3, ПК-4
5 Оптические измерения	1	1	15	17	ОПК-3, ПК-3, ПК-4
Итого за семестр	6	2	60	68	
	5 семестр)			
6 Прием и преобразование сигналов в оптических и оптико-электронных приборах и комплексах	0	2	11	13	ОПК-3, ПК-3, ПК-4
7 Проектирование оптических и оптико- электронных приборов и комплексов	0	1	11	12	ОПК-3, ПК-3, ПК-4
8 Основы технологии оптического и оптико-электронного приборостроения	0	1	10	11	ОПК-3, ПК-3, ПК-4
Итого за семестр	0	4	32	36	
Итого	6	6	92	104	

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Трудоемкость,	Формируемые компетенции	
	4 семестр		
1 Современное состояние и перспективы развития оптического и оптико-электронного приборостроения	Роль оптических и оптико-электронных приборов и комплексов (О и ОЭП и К) в развитии науки и техники. Краткий исторический обзор и роль отечественных ученых и инженеров в развитии оптического и оптико-электронного приборостроения. Перспективы и тенденции развития О и ОЭП и К.	1	ПК-3, ПК-4
	Итого	1	
2 Основы оптики	Электромагнитная и квантовая природа оптического излучения. Основные законы оптического излучения. Приближения геометрической оптики. Распространение света в изотропных и анизотропных средах. Поляризация. Двойное лучепреломление. Применение поляризации. Интерференция. Когерентность. Применение интерференции. Многолучевая интерференция. Дифракция. Применение дифракции. Разрешающая способность. Голография и ее применение в оптике. Распространение оптического излучения в атмосфере и других поглощающих, рассеивающих, преломляющих и турбулентных средах.	2	ОПК-3, ПК-3, ПК-4
	Итого	2	

3 Прикладная оптика	Основные законы и понятия геометрической оптики. Принцип Ферма. Условия получения идеального изображения. Основные положения и формулы идеальной оптической системы и оптики параксиальных лучей. Инварианты: Аббе, Лагранжа-Гельмгольца, Юнга-Гульстранда. Ограничение пучков лучей в оптических системах. Инвариант Штраубеля. Яркость и освещенность изображения. Теория аберраций оптических систем. Хроматические и монохроматические аберрации. Эйконал Шварцшильда. Типовые оптические детали и их характеристики. Классификация оптических систем и их основные характеристики. Основные задачи, решаемые при габаритном расчете оптических систем. Особенности лазерной оптики, формирование лазерного излучения оптическими системами. Оптические системы для фокусирования, коллимирования, изменения диаграмм направленности и согласования лазерного излучения. Волоконно-оптические системы и их особенности. Интегральная оптика и перспективы ее развития. Дифракционные оптические элементы и системы. Оценка качества изображения, даваемого оптической системой. Критерии качества. Вычисление и методы экспериментального определения оптической передаточной функции.	1	ОПК-3, ПК-3, ПК-4
	Итого	1	
4 Источники и приемники оптического излучения	Основные виды источников оптического излучения. Параметры и характеристики источников. Некогерентные искусственные излучатели. Естественные источники излучения. Современные лазеры: принципы действия, принципиальные схемы, режимы работы, параметры и характеристики. Основные виды приемников оптического излучения. Глаз человека как приемник излучения и измерительной информации. Свойства зрительного анализатора. Параметры и характеристики приемников оптического излучения. Многоэлементные приемники излучения. Схемы включения приемников излучения и согласующие цепи.	1	ОПК-3, ПК-3, ПК-4
5.0		1	HIC 2 HIC 4
5 Оптические измерения	Основы метрологии применительно к оптическим измерениям. Методы и приборы	1	ПК-3, ПК-4

	для измерения и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем. Оптические измерения в инфракрасной и уль-трафиолетовой областях спектра. Фотометрия и радиометрия. Принципы работы и схемы основных типов фотометров, радиометров, спектрофотометров и спектрорадиометров. Способы измерения параметров и характеристик лазерного излучения		
	Итого	1	
Итого за семестр		6	
Итого		6	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин				цисципли ающих и				
	1	2	3	4	5	6	7	8
	Предш	ествуюц	цие дисц	иплины				
1 Оптические и оптико-электронные приборы и комплексы	+	+	+	+	+	+	+	+
2 Оптические и оптико-электронные приборы и комплексы	+	+	+	+	+	+	+	+
3 Методы управления оптическим излучением			+	+	+	+	+	+
4 Основы организации научных исследований	+		+					
5 Теория систем и системный анализ						+	+	
6 Фотоника, приборостроение, оптические и биотехнические системы и технологии	+						+	+
	Посл	едующи	е дисциі	тлины		-		
1 Оптические и оптико-электронные приборы и комплексы	+	+	+	+	+	+	+	+
2 Оптические и оптико-электронные приборы и комплексы	+	+	+	+	+	+	+	+
3 Подготовка к сдаче и сдача государственного экзамена	+	+	+	+	+	+	+	+
4 Подготовка научно-квалифи- кационной работы (диссерта- ции) на соискание ученой сте- пени кандидата наук (рассред.)	+	+	+	+	+	+	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Компетенци		Виды занятий	Формил компрода	
И	Лек.	Прак. зан.	Сам. раб.	Формы контроля
ОПК-3	+	+	+	Экзамен, Опрос на занятиях, Тест, Дифференцированный за- чет
ПК-3	+	+	+	Экзамен, Опрос на занятиях, Тест, Дифференцированный за- чет
ПК-4	+	+	+	Экзамен, Опрос на занятиях, Тест, Дифференцированный за- чет

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Не предусмотрено РУП.

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Названия разделов Наименование практических занятий (семинаров)		Формируемые компетенции
	4 семестр		
4 Источники и приемники оптического излучения	Основные виды источников оптического излучения. Параметры и характеристики источников. Некогерентные искусственные излучатели. Естественные источники излучения. Современные лазеры: принципы действия, принципиальные схемы, режимы работы, параметры и характеристики. Основные виды приемников оптического излучения. Глаз человека как приемник излучения и измерительной информации. Свойства зрительного анализатора. Параметры и характеристики приемников оптического излучения. Многоэлементные приемники излучения. Схемы включения приемников излучения и согласующие цепи.	1	ОПК-3, ПК-3, ПК-4
	Итого	1	
5 Оптические измерения	Основы метрологии применительно к оптическим измерениям. Методы и приборы для измерения и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем. Оптические измерения в инфра-	1	ОПК-3, ПК-3, ПК-4

	красной и ультрафиолетовой областях спектра. Фотометрия и радиометрия. Принципы работы и схемы основных типов фотометров, радиометров, спектрофотометров и спектрорадиометров. Способы измерения параметров и характеристик лазерного излучения		
	Итого	1	
Итого за семестр		2	
	5 семестр		
6 Прием и преобразование сигналов в оптических и оптико-электронных приборах и комплексах	Пространственное, временное, пространственно-частотное и частотно-временное представление оптических сигналов. Статистические параметры и вероятностное описание оптических полей и сигналов. Модели фона. Анализаторы оптического изображения. Преобразование многомерных оптических сигналов в одномерные электрические. Сканирование в оптико-электронных приборах. Типы сканирующих систем. Математические модели отдельных типовых звеньев и оптико-электронной системы в целом. Методы фильтрации сигналов в оптических и оптико-электронных приборах и комплексах (О и ОЭП и К). Спектральная, пространственная и пространственно-временная фильтрация. Оптимальная фильтрация в когерентных и некогерентных оптических системах. Модуляция и демодуляция сигнала в О и ОЭП и К. Основные виды модуляторов; их параметры и характеристики. Оптическая корреляция. Схемы некогерентных и когерентных оптико-электронных корреляторов. Математические операции, осуществляемые с помощью оптических систем. Оптические анализаторы спектра. Цифровая обработка оптических изображений.	2	ОПК-3, ПК-3, ПК-4
	Итого	2	
7 Проектирование оптических и оптико- электронных приборов и комплексов	Основные критерии оценки качества О и ОЭП и К как объектов проектирования. Основные принципы системного подхода к проектированию О и ОЭП и К. Уровни проектирования. Конструктивные и технологические требования к О и ОЭП и К. Моделирование и применение САПР при проектировании О и ОЭП и К. Обобщенная методика энергетического расчета О и ОЭП и К. Основные виды энергетических расчетов (расчет отношения сигнал/шум, расчет к.п.д. прибора, расчет дальности	1	ОПК-3, ПК-3, ПК-4

	действия и пороговой чувствительности). Особенности энергетического расчета лазерных приборов. Методика выполнения точностных расчетов О и ОЭП и К. Методы и средства компенсации погрешностей в О и ОЭП и К. Особенности расчета и конструирования типовых кинематических узлов О и ОЭП и К. Метрологические параметры и характеристики О и ОЭП и К; аттестация и сертификация О и ОЭП и К. Испытания и исследования О и ОЭП и К. Методы и аппаратура для проведения испытаний О и ОЭП и К. Применение эргономики при проектировании О и ОЭП и К.		
	Итого	1	
8 Основы технологии оптического и оптико-электронного приборостроения	Конструкционные материалы, применяемые в современном оптическом и оптико- электронном приборостроении. Современные методы и средства изготовления типовых деталей и элементов О и ОЭП и К. Методы сборки, юстировки и контроля в процессе изготовления типовых деталей, узлов и О и ОЭП и К в целом.	1	ОПК-3, ПК-3, ПК-4
	Итого	1	
Итого за семестр		4	
Итого		6	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

	•		1 1 1	
Названия разделов	Виды самостоятельной работы	Трудоемкость, ч	Формируемые компетенции	Формы контроля
	4	семестр		
1 Современное состояние и перспективы	Самостоятельное изучение тем (вопросов) теоретической части курса	6	ОПК-3, ПК-3, ПК-4	Дифференцирован- ный зачет, Опрос на занятиях, Тест
развития оптического и оптико-	Проработка лекционного материала	1		
электронного приборостроения	Итого	7		
2 Основы оптики	Самостоятельное изучение тем (вопросов) теоретической части курса	8	ОПК-3, ПК-3, ПК-4	Дифференцирован- ный зачет, Опрос на занятиях, Тест
	Проработка лекционного материала	2		
	Итого	10		
3 Прикладная	Самостоятельное изуче-	10	ОПК-3, ПК-3,	Дифференцирован-

оптика	ние тем (вопросов) теоретической части курса		ПК-4	ный зачет, Опрос на занятиях, Тест
	Проработка лекционного материала	4		
	Итого	14		
4 Источники и приемники оптического излучения	Подготовка к практическим занятиям, семинарам	3	ОПК-3, ПК-3, ПК-4	Дифференцирован- ный зачет, Опрос на занятиях, Тест
	Самостоятельное изучение тем (вопросов) теоретической части курса	9		
	Проработка лекционного материала	2		
	Итого	14		
5 Оптические измерения	Подготовка к практическим занятиям, семинарам	4	ОПК-3, ПК-3, ПК-4	Дифференцирован- ный зачет, Опрос на занятиях, Тест
	Самостоятельное изучение тем (вопросов) теоретической части курса	9		
	Проработка лекционного материала	2		
	Итого	15		
Итого за семестр		60		
	Подготовка и сдача зачета	4		Дифференцирован- ный зачет
	5	семестр		
6 Прием и преобразование сигналов в	Подготовка к практическим занятиям, семинарам	3	ОПК-3, ПК-3, ПК-4	Опрос на занятиях, Тест, Экзамен
оптических и оптико- электронных приборах и	Самостоятельное изучение тем (вопросов) теоретической части курса	8		
комплексах	Итого	11		
7 Проектирование оптических и оптико- электронных приборов и комплексов	Подготовка к практическим занятиям, семинарам	3	ОПК-3, ПК-3, ПК-4	Опрос на занятиях, Тест, Экзамен
	Самостоятельное изучение тем (вопросов) теоретической части курса	8		
	Итого	11		
8 Основы технологии оптического и	Подготовка к практическим занятиям, семинарам	2	ОПК-3, ПК-3, ПК-4	Опрос на занятиях, Тест, Экзамен
оптико-	Самостоятельное изуче-	8		

электронного приборостроения	ние тем (вопросов) теоретической части курса		
	Итого	10	
Итого за семестр		32	
	Подготовка и сдача экзамена	36	Экзамен
Итого		132	

10. Курсовой проект / курсовая работа

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся Рейтинговая система не используется.

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Розеншер Э. Оптоэлектроника : Пер. с фр. / Э. Розеншер, Б. Винтер ; ред. пер. О. Н. Ермаков. М. : Техносфера, 2006. 588 с. (наличие в библиотеке ТУСУР 40 экз.)
- 2. Волоконно-оптические устройства технологического назначения [Электронный ресурс]: Учебное пособие / В. М. Шандаров 2012. 198 с. Режим доступа: https://edu.tusur.ru/publications/741 (дата обращения: 29.11.2018).
- 3. Физические основы акустооптики / В. И. Балакший, В. Н. Парыгин, Л. Е. Чирков. М. : Радио и связь, 1985. 278[2] с. : ил., табл. (наличие в библиотеке ТУСУР 11 экз.) (наличие в библиотеке ТУСУР 11 экз.)
- 4. Ярив А. Оптические волны в кристаллах / А. Ярив, П. Юх. М.: Мир, 1987. 616 с.: (наличие в библиотеке ТУСУР 5 экз.)

12.2. Дополнительная литература

- 1. А.Н. Пихтин. Квантовая и оптическая электроника [Текст] : учебник для вузов / А. Н. Пихтин. М. : Абрис, 2012. 656 с. (наличие в библиотеке ТУСУР 42 экз.)
- 2. Информационная оптика / Под ред. Н.Н. Евтихеева. Учебное пособие М., Издательство МЭИ, 2000. 516 с. (наличие в библиотеке ТУСУР 18 экз.)
- 3. Основы оптики : Пер. с англ. / М. Борн, Э. Вольф ; пер. : С. Н. Бреус, А. И. Головашкин, А. А. Шубин ; ред. пер. : Г. П. Мотулевич. М. : Наука, 1970. 855 с (наличие в библиотеке ТУСУР 5 экз.)
- 4. Справочник по лазерам : в 2 т.: пер. с англ. с изм. и доп. / ред. пер. А. М. Прохоров. М. : Советское радио, 1978. Т. 2 / М. Ф. Стельмах, Г. Когельник [и др.]. М. : Советское радио, 1978. 400 с. (наличие в библиотеке ТУСУР 9 экз.)
- 5. Физика лазеров : Пер. с англ. / О. Звелто ; ред. пер. Т. А. Шмаонов. М. : Мир, 1979. 373 с. (наличие в библиотеке ТУСУР 5 экз.)
- 6. Принципы адаптивной оптики : монография / Михаил Алексеевич Воронцов, Виктор Иванович Шмальгаузен. М. : Наука, 1985. 336 с. (наличие в библиотеке ТУСУР 5 экз.)

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Информационные и электронные ресурсы в организации научных исследований [Электронный ресурс]: Учебно-методическое пособие по практической и самостоятельной работе / Е. М. Покровская 2018. 13 с. Режим доступа: https://edu.tusur.ru/publications/7289 (дата обращения: 29.11.2018).
- 2. Радиофотоника [Электронный ресурс]: Методические указания к практическим занятиям и по самостоятельной работе / С. М. Шандаров, Н. И. Буримов 2018. 34 с. Режим доступа: https://edu.tusur.ru/publications/8438 (дата обращения: 29.11.2018).
- 3. Приборы и методы управления оптическим излучением [Электронный ресурс]: Методические указания к практическим занятиям и по самостоятельной работе / Н. И. Буримов, С. М.

Шандаров - 2018. 45 с. — Режим доступа: https://edu.tusur.ru/publications/8484 (дата обращения: 29.11.2018).

4. Фоторефрактивные эффекты в электрооптических кристаллах [Электронный ресурс]: Учебное пособие / В. М. Шандаров, А. Е. Мандель, С. М. Шандаров, Н. И. Буримов - 2012. 244 с. (Используется для практических занятий) — Режим доступа: https://edu.tusur.ru/publications/1553 (дата обращения: 29.11.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/resursy/bazy-dannyh

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Лекционная аудитория с интерактивным проектором и маркерной доской

учебная аудитория для проведения занятий лекционного типа, учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий семинарского типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации

634034, Томская область, г. Томск, Вершинина улица, д. 74, 237 ауд.

Описание имеющегося оборудования:

- Компьютер;
- Проектор;
- Экран для проектора;
- Магнитно-маркерная доска;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

7-Zip

- Google Chrome
- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows
- OpenOffice

УНЛ оптического материаловедения, нелинейной оптики и нанофотоники / Лаборатория ГПО

учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций

634034, Томская область, г. Томск, Вершинина улица, д. 74, 008 ауд.

Описание имеющегося оборудования:

- Столы оптические (3 шт.);
- Лазеры твердотельные LCS-DTL-317 и LCS-DTL-316, лазерный комплекс с длинами волн (510,6; 578,2; 630-700 нм, 0.05-8 Вт, лазеры He-Ne (633 нм, 1 20 мВт);
 - Спектрофотометры СФ-2000 и Genesis 2;
- Комплекты оптических и опто-механических компонентов, автоматизированные комплексы обработки данных, ПК класса Pentium IV со специализированным ПО для каждого рабочего места;
 - Весы электронные лабораторные ЕТ-200П;
 - Вольтметр GDM-78261;
 - Генератор сигналов АНР-3121;
 - Источник питания линейный многоканальный АТН-2335;
 - Нановольтметр селективный Unipan-232B;
 - Установка УМОГ-3;
 - Цифровой вольтметр В7-78/1;
 - Вольтметр универсальный В7-40;
 - Компьютер (5 шт.);
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip
- Google Chrome
- Kaspersky Endpoint Security 10 для Windows
- Microsoft Windows
- OpenOffice

13.1.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;

- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

К оптическому диапазону относят излучение с длинами волн от:

- а) 1 мм до 1 нм;
- б) 10 м до 0,3 мм;
- в) 100 км до 0.1 мм;
- г) 1 мм до 0,1 мм;
- д) 10 см до 1 см.

Когерентностью называют:

- а) способность световых волн распространяться в прозрачных средах;
- б) зависимость фазовой скорости световых волн в среде от длины волны;
- в) способность световых волн распространяться в вакууме;
- г) зависимость фазовой скорости световых волн в кристаллах от их поляризации;
- д) согласованное протекание во времени нескольких волновых процессов или свойство, отражающее стабильность фазы одной или нескольких электромагнитных волн.

Какая среда является анизотропной:

- а) свойства среды в различных направлениях внутри этой среды различны;
- б) свойства среды в различных направлениях внутри этой среды одинаковы;
- в) свойства среды изменяются вдоль выделенного направления внутри этой среды;
- г) свойства среды изменяются во времени вдоль выделенного направления внутри этой среды.

Диэлектрическая проницаемость оптически анизотропной среды описывается:

- а) скалярной величиной;
- б) тензором первого ранга;
- в) тензором второго ранга;
- г) тензором третьего ранга.
- В планарном волноводе показатель преломления волноводного слоя:

- а) не должен превышать показатели преломления как для подложки, так и для покровной среды;
- б) должен быть равным показателю преломления покровной среды и превышать показатель преломления подложки;
- в) должен быть равным показателю преломления подложки и превышать показатель преломления покровной среды;
 - г) должен превышать показатели преломления подложки и покровной среды.

При полном внутреннем отражении:

- а) отраженная волна в оптически более плотной среде отсутствует;
- б) отраженная волна в оптически менее плотной среде отсутствует;
- в) преломленная волна в оптически более плотной среде отсутствует;
- г) преломленная волна в оптически менее плотной среде отсутствует.
- В волоконном световоде показатель преломления сердцевины:
- а) должен быть равен показателю преломления внутренней оболочки;
- б) должен быть меньше показателя преломления внутренней оболочки;
- в) должен быть больше показателя преломления внутренней оболочки;
- г) должен быть меньше показателя преломления внешней оболочки
- В градиентном волоконном световоде показатель преломления:
- а) не изменяется в пределах сердцевины, резко уменьшаясь на границе с внутренней оболочкой;
 - б) плавно уменьшается от центра сердцевины к краям;
 - г) плавно увеличивается от центра сердцевины к краям;
 - д) плавно изменяется вдоль оси световода.

Геометрическое место точек, в которых фаза волны остается постоянной называют:

- а) фазовой скоростью волны;
- б) фазовым или волновым фронтом;
- в) эквипотенциальной поверхностью волны;
- г) плоскостью поляризации волны;
- д) поверхностью волновой нормали.

Линейный электрооптический эффект Поккельса наблюдается в:

- а) кристаллах, не обладающих центром симметрии;
- б) центросимметричных кристаллах;
- в) изотропных телах;
- г) проводниках.

Брэгговские зеркала в волоконных световодах реализуются:

- а) за счет отражения от атомных плоскостей кристаллов;
- б) за счет сколов торцов волокон, ортогональных их оси;
- в) за счет периодических возмущений магнитной проницаемости волокна;
- г) за счет фотоиндуцированных решеток показателя преломления в волоконном световоде.
- Электрооптические методы управления оптическим излучением основаны на:
- а) использовании дифракции света на бегущих акустических волнах;
- б) использовании дифракции света на бегущих акустических волнах в планарных волноводах;
- в) использовании эффектов, связанных с изменениями оптических индикатрис кристаллов, обладающих электрооптическим эффектом под воздействием электрического поля;
- г) использовании эффектов, связанных с перераспределением интенсивности света в результате наложения (суперпозиции) нескольких световых волн.
 - В основе акустооптических методов управления оптическим излучением лежит
- а) явление изменения показателя преломления оптически прозрачных фотоупругих сред под воздействием возбуждаемых в них акустических волн;
 - б) явление изменения показателя преломления от температуры;
- в) явление изменения оптических индикатрис кристаллов, обладающих электрооптическим эффектом под воздействием электрического поля;
 - г) использование эффектов, связанных с перераспределением интенсивности света в ре-

зультате наложения (суперпозиции) нескольких световых волн.

Магнитооптический эффект Керра заключается в том, что:

- а) при прохождении линейно поляризованной световой волны через намагниченный материал наблюдается вращение плоскости поляризации световой волны, и световая волна становится эллиптически поляризованной;
- б) при отражении линейно поляризованной световой волны от поверхности намагниченного материала наблюдается вращение плоскости поляризации световой волны, и световая волна становится эллиптически поляризованной;
- в) при прохождении линейно поляризованной световой волны через немагнитный материал наблюдается вращение плоскости поляризации световой волны, и световая волна становится эллиптически поляризованной;
- г) при отражении неполяризованной световой волны от поверхности намагниченного материала наблюдается вращение плоскости поляризации световой волны, и световая волна становится эллиптически поляризованной.

Достоинством технологических волоконных лазеров является:

- а) доставка излучения с использованием коллимирующих устройств;
- б) доставки излучения с помощью волоконного кабеля необходимой длины (50 м и более);
- в) доставка излучения с использованием фокусирующих устройств;
- г) доставка излучения через атмосферный канал.

Для обеспечения минимальной интенсивности света на выходе интерферометрического волноводного модулятора Маха-Цендера на его плечи нужно подать напряжение:

- а) равное полуволновому напряжению;
- б) равное удвоенному значению полуволнового напряжения;
- в) равное значению, превышающему полуволновое напряжение в 1,41 раза;
- г) равное половине полуволнового напряжения.
- В р-і-п-фотодиоде і-слой собственного полупроводника:
- а) обеспечивает увеличение емкости фотоприемного устройства и уменьшение поглощения регистрируемого светового излучения;
- б) обеспечивает увеличение емкости фотоприемного устройства и увеличение поглощения регистрируемого светового излучения;
- в) обеспечивает уменьшение емкости фотоприемного устройства и увеличение поглощения регистрируемого светового излучения;
- г) обеспечивает уменьшение предельного обратного напряжения смещения при фотодиодном режиме.
 - В фотоприемных устройствах граничная частота демодуляции:
 - а) прямо пропорциональна собственной постоянной времени фотодиода;
 - б) обратно пропорциональна собственной постоянной времени фотодиода;
 - в) обратно пропорциональна квадрату собственной постоянной времени фотодиода;
- г) прямо пропорциональна корню квадратному из собственной постоянной времени фотодиода

Для лазерных интерферометрических систем целесообразно использование волоконных лазерных систем с брэгговскими зеркалами:

- а) вследствие высокой степени монохроматичности и большой длины когерентности излучения;
 - б) вследствие широкой полосы частот генерируемого излучения;
 - в) вследствие малого времени когерентности генерируемого излучения;
 - г) вследствие большой длины лазерного резонатора.

Для систем лазерной спектроскопии целесообразно использование волоконных лазерных систем с брэгговскими зеркалами:

- а) вследствие широкой полосы частот генерируемого излучения;
- б) вследствие высокой степени монохроматичности генерируемого излучения;
- в) вследствие малого времени когерентности генерируемого излучения;
- г) вследствие большой длины лазерного резонатора.

14.1.2. Экзаменационные вопросы

- 1. Электромагнитная и квантовая природа оптического излучения. Основные законы оптического излучения. Приближения геометрической оптики. Распространение света в изотропных и анизотропных средах.
- 2. Поляризация. Двойное лучепреломление. Применение поляризации. Интерференция. Когерентность. Применение интерференции. Многолучевая интерференция.
 - 3. Дифракция. Применение дифракции. Разрешающая способность.
 - 4. Голография и ее применение.
- 5. Основные законы и понятия геометрической оптики. Принцип Ферма. Условия получения идеального изображения. Основные положения и формулы идеальной оптической системы и оптики параксиальных лучей. Инварианты: Аббе, Лагранжа-Гельмгольца, Юн-га-Гульстранда. Ограничение пучков лучей в оптических системах.
- 6. Теория аберраций оптических систем. Хроматические и монохромати-ческие аберрации. Эйконал Шварцшильда. Методы аберрационного расчета оптических систем. Выбор аберраций, подлежащих исправлению. Особенности аберрационного расчета оптических систем с асферическими поверхностями.
- 7. Классификация оптических систем и их основные характеристики. Основные задачи, решаемые при габаритном расчете оптических систем. Габаритный расчет основных типов оптических систем: телескопических, лупы, микроскопа, проекционных, фотоэлектрических и голографических приборов.
- 8. Особенности лазерной оптики, формирование лазерного излучения оптическими системами. Оптические системы для фокусирования, коллимирования, изменения диаграмм направленности и согласования лазерного излучения.
- 9. Волоконно-оптические системы и их особенности. Интегральная оптика и перспективы ее развития. Дифракционные оптические элементы и системы. Оценка качества изображения, даваемого оптической системой. Критерии качества. Вычисление и методы экспериментального определения оптической передаточной функции.
- 10. Основные виды источников оптического излучения. Параметры и характеристики источников. Некогерентные искусственные излучатели. Естественные источники излучения. Современные лазеры: принципы действия, принципиальные схемы, режимы работы, параметры и характеристики.
- 11. Основные виды приемников оптического излучения. Глаз человека как приемник излучения и измерительной информации. Свойства зрительного анализатора. Параметры и характеристики приемников оптического излучения. Многоэлементные приемники излучения. Схемы включения приемников излучения и согласующие цепи.
- 12. Основы метрологии применительно к оптическим измерениям. Методы и приборы для измерения и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем. Оптические измерения в инфракрасной и ультрафиолетовой областях спектра. Фотометрия и радиометрия.
- 13. Принципы работы и схемы основных типов фотометров, радиометров, спектрофотометров и спектрорадиометров. Способы измерения параметров и характеристик лазерного излучения.
- 14. Пространственное, временное, пространственно-частотное и частотно-временное представление оптических сигналов. Статистические параметры и вероятностное описание оптических полей и сигналов. Модели фона.
- 15. Анализаторы оптического изображения. Преобразование многомерных оптических сигналов в одномерные электрические. Сканирование в оптико-электронных приборах. Типы сканирующих систем. Математические модели отдельных типовых звеньев и оптико-электронной системы в целом.
- 16. Методы фильтрации сигналов в О и ОЭП и К. Спектральная, пространственная и пространственно-временная фильтрация. Оптимальная фильтрация в когерентных и некогерентных оптических системах.
- 17. Модуляция и демодуляция сигнала в О и ОЭП и К. Основные виды модуляторов; их параметры и характеристики.
 - 18. Оптическая корреляция. Схемы некогерентных и когерентных оптико-электронных кор-

реляторов.

- 19. Математические операции, осуществляемые с помощью оптических систем. Оптические анализаторы спектра. Цифровая обработка оптических изображений.
- 20. Основные критерии оценки качества О и ОЭП и К как объектов проектирования. Основные принципы системного подхода к проектированию О и ОЭП и К. Уровни проектирования. Конструктивные и технологические тре-бования к О и ОЭП и К. Моделирование и применение САПР при проектировании О и ОЭП и К. Обобщенная методика энергетического расчета О и ОЭП и К.
- 21. Основные виды энергетических расчетов (расчет отношения сигнал/шум, расчет к.п.д. прибора, расчет дальности действия и пороговой чув-ствительности). Особенности энергетического расчета лазерных приборов. Методика выполнения точностных расчетов О и ОЭП и К. Методы и средства компенсации погрешностей в О и ОЭП и К. Особенности расчета и конструирования типовых кинематических узлов О и ОЭП и К.
- 22. Метрологические параметры и характеристики О и ОЭП и К; аттестация и сертификация О и ОЭП и К. Испытания и исследования О и ОЭП и К. Методы и аппаратура для проведения испытаний О и ОЭП и К. Применение эргономики при проектировании О и ОЭП и К.
- 23. Конструкционные материалы, применяемые в современном оптическом и оптико-электронном приборостроении. Современные методы и средства изготовления типовых деталей и элементов О и ОЭП и К. Методы сборки, юстировки и контроля в процессе изготовления типовых деталей, узлов и О и ОЭП и К в целом.
- 24. Основные классы и типы О и ОЭП и К, применяемые в промышленности и на транспорте, медицине и биологии, научных исследованиях, контроле окружающей среды, военной технике, строительстве и геодезии, космических исследованиях, разведке природных ресурсов; перспективы их совершенствования и развития.
 - 25. Развитие двойных технологий в оптическом и оптико-электронном приборостроении.

14.1.3. Темы опросов на занятиях

Роль оптических и оптико-электронных приборов и комплексов (О и ОЭП и К) в развитии науки и техники. Краткий исторический обзор и роль отечественных ученых и инженеров в развитии оптического и оптико-электронного приборостроения. Перспективы и тенденции развития О и ОЭП и К.

Электромагнитная и квантовая природа оптического излучения. Основные законы оптического излучения. Приближения геометрической оптики. Распространение света в изотропных и анизотропных средах. Поляризация. Двойное лучепреломление. Применение поляризации. Интерференция. Когерентность. Применение интерференции. Многолучевая интерференция. Дифракция. Применение дифракции. Разрешающая способность. Голография и ее применение в оптике. Распространение оптического излучения в атмосфере и других поглощающих, рассеивающих, преломляющих и турбулентных средах.

Основные законы и понятия геометрической оптики. Принцип Ферма. Условия получения идеального изображения. Основные положения и формулы идеальной оптической системы и оптики параксиальных лучей. Инварианты: Аббе, Лагранжа-Гельмгольца, Юнга-Гульстранда. Ограничение пучков лучей в оптических системах. Инвариант Штраубеля. Яркость и освещенность изображения. Теория аберраций оптических систем. Хроматические и монохроматические аберрации. Эйконал Шварцшильда. Типовые оптические детали и их характеристики. Классификация оптических систем и их основные характеристики. Основные задачи, решаемые при габаритном расчете оптических систем. Особенности лазер-ной оптики, формирование лазерного излучения оптическими системами. Оптические системы для фокусирования, коллимирования, изменения диаграмм направленности и согласования лазерного излучения. Волоконно-оптические системы и их особенности. Интегральная оптика и перспективы ее развития. Дифракционные оптические элементы и системы. Оценка качества изображения, даваемого оптической системой. Критерии качества. Вычисление и методы экспериментального определения оптической передаточной функции.

Основные виды источников оптического излучения. Параметры и характеристики источников. Некогерентные искусственные излучатели. Естественные источники излучения. Современные лазеры: принципы действия, принципиальные схемы, режимы работы, параметры и характеристики. Основные виды приемников оптического излучения. Глаз человека как приемник излучения и

измерительной информации. Свойства зрительного анализатора. Параметры и характеристики приемников оптического излучения. Многоэлементные приемники излучения. Схемы включения приемников излучения и согласующие цепи.

Основы метрологии применительно к оптическим измерениям. Методы и приборы для измерения и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем. Оптические измерения в инфракрасной и уль-трафиолетовой областях спектра. Фотометрия и радиометрия. Принципы работы и схемы основных типов фотометров, радиометров, спектрофотометров и спектрорадиометров. Способы измерения параметров и характеристик лазерного излучения

14.1.4. Вопросы дифференцированного зачета

- 1. Электромагнитная и квантовая природа оптического излучения. Основные законы оптического излучения. Приближения геометрической оптики. Распространение света в изотропных и анизотропных средах.
- 2. Поляризация. Двойное лучепреломление. Применение поляризации. Интерференция. Когерентность. Применение интерференции. Многолучевая интерференция.
 - 3. Дифракция. Применение дифракции. Разрешающая способность.
 - 4. Голография и ее применение.
- 5. Основные законы и понятия геометрической оптики. Принцип Ферма. Условия получения идеального изображения. Основные положения и формулы идеальной оптической системы и оптики параксиальных лучей. Инварианты: Аббе, Лагранжа-Гельмгольца, Юнга-Гульстранда. Ограничение пучков лучей в оптических системах.
- 6. Теория аберраций оптических систем. Хроматические и монохроматические аберрации. Эйконал Шварцшильда. Методы аберрационного расчета оптических систем. Выбор аберраций, подлежащих исправлению. Особенности аберрационного расчета оптических систем с асферическими поверхностями.
- 7. Классификация оптических систем и их основные характеристики. Основные задачи, решаемые при габаритном расчете оптических систем. Габаритный расчет основных типов оптических систем: телескопических, лупы, микроскопа, проекционных, фотоэлектрических и голографических приборов.
- 8. Особенности лазерной оптики, формирование лазерного излучения оптическими системами. Оптические системы для фокусирования, коллимирования, изменения диаграмм направленности и согласования лазерного излучения.
- 9. Волоконно-оптические системы и их особенности. Интегральная оптика и перспективы ее развития. Дифракционные оптические элементы и системы. Оценка качества изображения, даваемого оптической системой. Критерии качества. Вычисление и методы экспериментального определения оптической передаточной функции.
- 10. Основные виды источников оптического излучения. Параметры и характеристики источников. Некогерентные искусственные излучатели. Естественные источники излучения. Современные лазеры: принципы действия, принципиальные схемы, режимы работы, параметры и характеристики.
- 11. Основные виды приемников оптического излучения. Глаз человека как приемник излучения и измерительной информации. Свойства зрительного анализатора. Параметры и характеристики приемников оптического излучения. Многоэлементные приемники излучения. Схемы включения приемников излучения и согласующие цепи.
- 12. Основы метрологии применительно к оптическим измерениям. Методы и приборы для измерения и контроля основных параметров и характеристик оптических материалов, оптических деталей и оптических систем. Оптические измерения в инфракрасной и ультрафиолетовой областях спектра. Фотометрия и радиометрия.
- 13. Принципы работы и схемы основных типов фотометров, радиометров, спектрофотометров и спектрорадиометров. Способы измерения параметров и характеристик лазерного излучения.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

эдоровый и инванидов		
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.