МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Директор департамента образования

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Общая теория радиосвязи

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 11.03.01 Радиотехника

Направленность (профиль) / специализация: Радиотехнические средства передачи, приема и обработки сигналов

Форма обучения: заочная (в том числе с применением дистанционных образовательных технологий)

Факультет: **ФДО**, **Факультет** дистанционного обучения Кафедра: **РСС**, **Кафе**дра радиоэлектроники и систем связи

Курс: **4** Семестр: **8**

Учебный план набора 2016 года

Распределение рабочего времени

№	Виды учебной деятельности	8 семестр	Всего	Единицы
1	Самостоятельная работа под руководством преподавателя	18	18	часов
2	Лабораторные работы	8	8	часов
3	Контроль самостоятельной работы	4	4	часов
4	Всего контактной работы	30	30	часов
5	Самостоятельная работа	177	177	часов
6	Всего (без экзамена)	207	207	часов
7	Подготовка и сдача экзамена	9	9	часов
8	Общая трудоемкость	216	216	часов
			6.0	3.E.

Контрольные работы: 8 семестр - 2

Экзамен: 8 семестр

Томск 2018

Рассмотрена и	ОДО	обрена на засед	ании ка	федры
протокол №	8	от « <u>29</u> »	6	20 <u>18</u> г.

ЛИСТ СОГЛАСОВАНИЯ

	JII CODITITIVI
ственного образовательного стандарта высшего	лена с учетом требований федерального государо образования (ФГОС ВО) по направлению подго-
говки (специальности) 11.03.01 Радиотехника, у брена на заседании кафедры ТЭО «»	утвержденного 06.03.2015 года, рассмотрена и одо- 20 года, протокол №
Разработчик:	
ст. преподаватель каф. ТЭО	П. С. Мещеряков
Заведующий обеспечивающей каф.	
ТЭО	В. В. Кручинин
Рабочая программа дисциплины согласов	вана с факультетом и выпускающей кафедрой:
Декан ФДО	И. П. Черкашина
Заведующий выпускающей каф. PCC	А. В. Фатеев
Эксперты:	
Доцент кафедры технологий элек- тронного обучения (ТЭО)	Ю. В. Морозова
Старший преподаватель кафедры	
радиоэлектроники и систем связи (PCC)	Ю. В. Зеленецкая

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Формирование представлений об особенностях современных и перспективных систем передачи информации.

1.2. Задачи дисциплины

- Изучение современных методов модуляции и кодирования.
- Приобретение навыков компьютерного моделирования систем связи.
- Овладение навыками чтения справочной документации, в том числе на английском языке.

2. Место дисциплины в структуре ОПОП

Дисциплина «Общая теория радиосвязи» (Б1.В.ДВ.3.1) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Теория вероятностей и математическая статистика.

Последующими дисциплинами являются: Преддипломная практика, Цифровая обработка сигналов.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

— ПК-6 готовностью выполнять расчет и проектирование деталей, узлов и устройств радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации проектирования;

В результате изучения дисциплины обучающийся должен:

- знать Фундаментальное свойство линейных блочных кодов. Правило кодирования линейным блочным кодом. Структуру порождающих и проверочных матриц линейного блочного кода в систематической форме. Правило вычисления синдрома линейного блочного кода по проверочной матрице. Роль синдрома при обнаружении/исправлении ошибок, а также восстановлении стертых символов. Правило определения кодового расстояния линейного блочного кода по кодовой таблице. Способ определения кратностей гарантированно обнаруживаемых, гарантированно исправляемых ошибок, а также гарантированно восстанавливаемых стертых символов. Фундаментальное свойство циклических кодов. Правило кодирования циклическим кодом в систематической и несистематической формах. Способ деления и умножения полиномов с помощью цифровых фильтров, соответственно, рекурсивных и трансверсальных. Роль остатка от деления при декодировании циклических кодов. Особенности сверточных кодов. Алгоритм Витерби декодирования сверточных кодов. Особенности кодов с разреженными проверками на четность (LDPC). Способ мягкого итеративного декодирования кодов LDPC. Определение энтропии источника. Способы вычисления энтропии источника. Связь между взаимной зависимостью символов и энтропией источника. Принципы векторного квантования сообщений. Способ построения кода Хаффмана. Способ построения кода Шеннона- Фано. Способ расчета нижней границы для средней длины кода. Способ вычисления избыточности до и после кодирования. Способ вычисления пропускной способности каналов. Роль модуляции в системах передачи информации. Различие между аналоговой и цифровой модуляцией. Спектральный состав сигналов для основных методов модуляции: амплитудной, частотной и фазовой. Роль формирующих фильтров и влияние межсимвольной интерференции. Взаимосвязь методов модуляции с классами выходных усилителей мощности. Принципы модуляции множества ортогональных несущих (OFDM). Влияние фазового шума на производительность систем связи. Отношение сигнал-шум для цифровых систем связи. Об энергетической и частотной эффективности систем связи.
- **уметь** Составлять кодовую таблицу линейного блочного кода по его матрице. Приводить матрицы линейных блочных кодов к систематической форме. Определять кодовое расстояние линейного блочного кода по его проверочной матрице, а также по кодовой таблице. Делить и умножать полиномы над полем Галуа GF(2) двумя способами: алгебраически и с помощью цифровых фильтров. Составлять диаграмму состояний и решетку сверточного кода. Составлять дерево кода Хаффмана. Составлять код Шеннона-Фано. Вычислять энтропию заданного источника. Вычислять

избыточность до и после кодирования сжимающим кодом. Вычислять пропускную способность двоичного симметричного канала связи и канала со стираниями. На качественном уровне изображать спектральные диаграммы сигналов с модуляциями: амплитудной (AM), фазовой (ФМ), частотной (ЧМ) и OFDM.

- **владеть** Методами компьютерного моделирования современных и перспективных систем связи. Элементами проектирования современных и перспективных систем связи.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6.0 зачетных единицы и представлена в таблине 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		8 семестр
Контактная работа (всего)	30	30
Самостоятельная работа под руководством преподавателя (СРП)	18	18
Лабораторные работы	8	8
Контроль самостоятельной работы (КСР)	4	4
Самостоятельная работа (всего)	177	177
Подготовка к контрольным работам	28	28
Оформление отчетов по лабораторным работам	8	8
Подготовка к лабораторным работам	8	8
Самостоятельное изучение тем (вопросов) теоретической части курса	133	133
Всего (без экзамена)	207	207
Подготовка и сдача экзамена	9	9
Общая трудоемкость, ч	216	216
Зачетные Единицы	6.0	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	СРП, ч	Лаб. раб., ч	КСР, ч	Сам. раб., ч	Всего часов (без экзаме на)	Формируемы е компетенции
	8 cei	местр				
1 МАТЕМАТИЧЕСКИЕ МОДЕЛИ СИГНАЛОВ И ПОМЕХ	3	0	4	18	21	ПК-6
2 ПРЕОБРАЗОВАНИЯ СИГНАЛОВ	2	0		22	24	ПК-6
3 ПОМЕХОУСТОЙЧИВОЕ КОДИРО- ВАНИЕ. ШИФРОВАНИЕ	2	4		28	34	ПК-6
4 ТЕОРИЯ ИНФОРМАЦИИ	2	0		22	24	ПК-6
5 ДЕМОДУЛЯЦИЯ ЦИФРОВЫХ	4	4		33	41	ПК-6

СИГНАЛОВ						
6 МНОГОКАНАЛЬНАЯ ПЕРЕДАЧА И МНОГОСТАНЦИОННЫЙ ДОСТУП	3	0		30	33	ПК-6
7 ПРИНЦИПЫ ПОСТРОЕНИЯ СЕ- ТЕЙ ЭЛЕКТРОСВЯЗИ	2	0		24	26	ПК-6
Итого за семестр	18	8	4	177	207	
Итого	18	8	4	177	207	

5.2. Содержание разделов дисциплины (самостоятельная работа под руководством преподавателя)

Содержание разделов дисциплин (самостоятельная работа под руководством преподавателя) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (самостоятельная работа под руководством преподавателя)

даватели									
Названия разделов	Содержание разделов дисциплины Названия разделов (самостоятельная работа под руководством преподавателя)		Формируемые компетенции						
	8 семестр								
1 МАТЕМАТИЧЕСКИЕ МОДЕЛИ СИГНАЛОВ И ПОМЕХ	3	ПК-6							
	Итого	3							
2 ПРЕОБРАЗОВАНИЯ СИГНАЛОВ	Модель системы передачи информации .Элементы преобразователей .Преобразование неэлектрических сигналов в электрические.Квантование во времени непрерывного сигнала .Модуляция импульсной несущей дискретным сигналом.Аналогоцифровое и цифро-аналоговое преобразования. Пинейная цифровая фильтрация и генерирование последовательностей символов .Модуляция гармонической несущей цифровым сигналом. Корреляционный прием и согласованная фильтрация я. Модуляция гармонической несущей непрерывным сигналом.	2	ПК-6						
	Итого	2							
3 ПОМЕХОУСТОЙЧИ ВОЕ КОДИРОВАНИЕ. ШИФРОВАНИЕ	Корректирующие коды.Линейные блочные коды .Коды Хэмминга .Коды Рида—Малера .Циклические коды.Применение канала переспроса .Свёрточные коды .Шифрование	2	ПК-6						
	Итого	2							
4 ТЕОРИЯ ИНФОРМАЦИИ	Собственная информация и избыточность (цифровые сигналы) .Кодирование источника.Взаимная информация .Пропускная	2	ПК-6						

	способность канала и теоремы о кодировании в цифровом канале с помехами .Пропускная способность непрерывного канала с шумом. Итого	2	
5 ДЕМОДУЛЯЦИЯ ЦИФРОВЫХ СИГНАЛОВ	Роль априорной информации. Когерентные системы . Некогерентные системы . Частично-когерентные системы . Прием сигнала в условиях многолучевости . Регенерация цифрового сигнала в ретрансляторах. Особенности СПИ, в которых применяется помехоустойчивое кодирование	4	ПК-6
	Итого	4	
6 МНОГОКАНАЛЬНА Я ПЕРЕДАЧА И МНОГОСТАНЦИОН НЫЙ ДОСТУП	Методы многостанционного доступа. Многостанционный доступ с частотным разделением каналов. Многостанционный доступ с временным разделением каналов. Многостанционный доступ с кодовым разделением каналов. Синхронизация в СПИ с многостанционным доступом	3	ПК-6
	Итого	3	
7 ПРИНЦИПЫ ПОСТРОЕНИЯ СЕТЕЙ ЭЛЕКТРОСВЯЗИ	Определения, классификация, структуры сетей .Коммутация каналов и коммутация пакетов .Центры коммутации.Дейтаграммный метод передачи и передача с предварительным установлением соединения .Начала теории телетрафика	2	ПК-6
	Итого	2	
Итого за семестр		18	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин							
	1	2	3	4	5	6	7	
Предшествующие дисциплины								
1 Теория вероятностей и математическая статистика	+	+	+		+	+		
	Последующие дисциплины							
1 Преддипломная практика	+	+	+	+	+	+	+	
2 Цифровая обработка сигналов			+		+	+		

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Компетен		Виды з	анятий		Форман контроля
ции	СРП	Лаб. раб.	КСР	Сам. раб.	Формы контроля
ПК-6	+	+	+	+	Контрольная работа, Экзамен, Проверка контрольных работ, Отчет по лабораторной работе, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Трудоемкость,	Формируемые компетенции			
8 семестр						
3	Декодирование сигналов	4	ПК-6			
ПОМЕХОУСТОЙЧИ ВОЕ КОДИРОВАНИЕ. ШИФРОВАНИЕ	Итого	4				
5 ДЕМОДУЛЯЦИЯ ЦИФРОВЫХ	Формирование и обработка ЧМ-сигнала с непрерывной фазой	4	ПК-6			
СИГНАЛОВ	Итого	4				
Итого за семестр		8				

8. Контроль самостоятельной работы

Виды контроля самостоятельной работы приведены в таблице 8.1.

Таблица 8.1 – Виды контроля самостоятельной работы

№	Вид контроля самостоятельной работы	Трудоемкость (час.)	Формируемые компетенции
	8 семестр		
1	Контрольная работа	2	ПК-6
2	Контрольная работа	2	ПК-6
Итого	0	4	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
8 семестр				
ИЕ МОДЕЛИ	Самостоятельное изучение тем (вопросов) теоретической части курса	14	ПК-6	Контрольная работа, Тест, Экзамен
СИГНАЛОВ И	Подготовка к контроль-	4		

ПОМЕХ	ным работам			
	Итого	18		
2 ПРЕОБРАЗОВАН ИЯ СИГНАЛОВ	Самостоятельное изучение тем (вопросов) теоретической части курса	18	ПК-6	Контрольная работа, Тест, Экзамен
	Подготовка к контрольным работам	4		
	Итого	22		
3 ПОМЕХОУСТОЙ ЧИВОЕ КОДИРОВАНИЕ. ШИФРОВАНИЕ	Самостоятельное изучение тем (вопросов) теоретической части курса	16	ПК-6	Контрольная работа, Отчет по лабораторной работе,
	Подготовка к лабораторным работам	4		Тест, Экзамен
	Оформление отчетов по лабораторным работам	4		
	Подготовка к контроль- ным работам	4		
	Итого	28		
4 ТЕОРИЯ ИНФОРМАЦИИ	Самостоятельное изучение тем (вопросов) теоретической части курса	18	ПК-6	Контрольная работа, Тест, Экзамен
	Подготовка к контрольным работам	4		
	Итого	22		
5 ДЕМОДУЛЯЦИЯ ЦИФРОВЫХ СИГНАЛОВ	Самостоятельное изучение тем (вопросов) теоретической части курса	21	ПК-6	Контрольная работа, Отчет по лабораторной работе,
	Подготовка к лабораторным работам	4		Тест, Экзамен
	Оформление отчетов по лабораторным работам	4		
	Подготовка к контрольным работам	4		
	Итого	33		
6 МНОГОКАНАЛЬ НАЯ ПЕРЕДАЧА И МНОГОСТАНЦИ ОННЫЙ ДОСТУП	Самостоятельное изучение тем (вопросов) теоретической части курса	26	ПК-6	Контрольная работа, Тест, Экзамен
	Подготовка к контрольным работам	4		
	Итого	30		
7 ПРИНЦИПЫ ПОСТРОЕНИЯ СЕТЕЙ ЭЛЕКТРОСВЯЗИ	Самостоятельное изучение тем (вопросов) теоретической части курса	20	ПК-6	Контрольная работа, Тест, Экзамен
	Подготовка к контроль- ным работам	4		

	Итого	24		
	Выполнение контрольной работы	4	ПК-6	Контрольная работа
Итого за семестр		177		
	Подготовка и сдача экзамена	9		Экзамен
Итого		186		

10. Контроль самостоятельной работы (курсовой проект / курсовая работа) Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся Рейтинговая система не используется.

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Акулиничев Ю.П. Теория электрической связи [Электронный ресурс]: Учебное пособие. Томск: Томский межвузовский центр дистанционного образования, 2005. 129 с. Ч.1. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).
- 2. Акулиничев Ю.П. Теория электрической связи [Электронный ресурс]: Учебное пособие. В 2-х частях. Томск: Томский межвузовский центр дистанционного образования, 2007. Ч.2. 87 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).

12.2. Дополнительная литература

1. Долгих, Д.А. Основы цифровой радиосвязи [Электронный ресурс]: учебно-методическое пособие / Д.А. Долгих. — Электрон. дан. — Москва: ТУСУР, 2012. — 16 с. — Доступ из личного кабинета студента. — Режим доступа: https://e.lanbook.com/book/10983 (дата обращения: 17.09.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Мещеряков П.С. Общая теория радиосвязи [Электронный ресурс]: методические указания по организации самостоятельной работы для студентов заочной формы обучения технических направлений подготовки, обучающихся с применением дистанционных образовательных технологий / П.С. Мещеряков, В.В. Кручинин. Томск: ФДО, ТУСУР, 2018. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).
- 2. Акулиничев Ю.П. Теория электрической связи: Электронный курс Томск: ТУСУР, ФДО. 2018 Доступ из личного кабинета студента.
- 3. Новиков А. В. Общая теория связи [Электронный ресурс]: методические указания по выполнению лабораторных работ для студентов ФДО направлений подго-товки 11.03.01 «Радиотехника» и 11.03.02 «Инфокоммуникационные технологии и системы связи» / А. В. Новиков. Томск: ФДО, ТУСУР, 2016. 50 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).
- 4. Акулиничев Ю.П. Теория электрической связи [Электронный ресурс]: учебное методическое пособие. В 2-х частях. Томск: Томский межвузовский центр дистанционного образования, 2005. Ч.1 57 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).
- 5. Акулиничев Ю.П. Теория электрической связи [Электронный ресурс]: учебное методическое пособие. В 2-х частях. Томск: Томский межвузовский центр дистанционного образования, 2007. Ч.2. 40 с. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 17.09.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 1. Крупнейший российский информационный портал в области науки, технологии, медицины и образования. www.elibrary.ru
- 2. zbMATH математическая база данных, охватывающая материалы с конца 19 века. zbMath содержит около 4 000 000 документов, из более 3 000 журналов и 170 000 книг по математике, статистике, информатике, а также машиностроению, физике, естественным наукам и др. zbmath.org
- 3. ЭБС «Лань»: www.e.lanbook.com (доступ из личного кабинета студента по ссылке http://lanbook.fdo.tusur.ru).

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение дисциплины

Кабинет для самостоятельной работы студентов

учебная аудитория для проведения занятий лабораторного типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Коммутатор MicroTeak;
- Компьютер PENTIUM D 945 (3 шт.);
- Компьютер GELERON D 331 (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-zip (с возможностью удаленного доступа)
- Google Chrome (с возможностью удаленного доступа)
- Kaspersky Endpoint Security 10 для Windows (с возможностью удаленного доступа)
- MathCAD (с возможностью удаленного доступа)
- Microsoft Windows (с возможностью удаленного доступа)
- ОрепОffice (с возможностью удаленного доступа)

13.1.2. Материально-техническое и программное обеспечение для лабораторных работ

Кабинет для самостоятельной работы студентов

учебная аудитория для проведения занятий лабораторного типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и про-

межуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Коммутатор MicroTeak;
- Компьютер PENTIUM D 945 (3 шт.);
- Компьютер GELERON D 331 (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-zip (с возможностью удаленного доступа)
- Google Chrome (с возможностью удаленного доступа)
- Kaspersky Endpoint Security 10 для Windows (с возможностью удаленного доступа)
- MathCAD (с возможностью удаленного доступа)
- Microsoft Windows (с возможностью удаленного доступа)
- OpenOffice (с возможностью удаленного доступа)

13.1.3. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с нарушениями слуха предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инва-

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

- 1. Согласованный фильтр обеспечивает:
- Минимально короткий по времени отклик на своем выходе
- Максимальное отношение сигнал-шум на своем выходе в определенный момент времени, при условии, что шум белый
 - Снятие закона модуляции (демодуляцию)
 - Максимум шенноновской информации на своем выходе
 - 2. Формирующий фильтр обеспечивает:
 - Формирование квадратурных сигналов с заданной формой спектральной плотности
 - Формирование узкополосного сигнала на некоторой несущей частоте
 - Формирование ортогональных по времени квадратурных сигналов
 - Формирование тактовых импульсов для символьной синхронизации
 - 3. Согласованный фильтр является:
 - Линейным фильтром с постоянными параметрами
 - Нелинейным фильтром с постоянными параметрами
 - Линейным фильтром с переменными параметрами
 - Нелинейным фильтром с переменными параметрами
 - 4. Формирующий фильтр является:
 - Линейным фильтром с постоянными параметрами
 - Нелинейным фильтром с постоянными параметрами
 - Линейным фильтром с переменными параметрами
 - Нелинейным фильтром с переменными параметрами
 - 5. Параметр Roll-off factor формирующего фильтра типа "приподнятый" косинус позволяет:
 - Изменить уровень межсимвольной интерференции на своем выходе
 - Изменить ширину спектра формируемого сигнала
 - Изменить скорость спада мощности вне основной полосы формируемого сигнала
 - Изменить амплитуду формируемого сигнала
 - 6. Межсимвольная интерференция это:
 - Когда время прихода импульса является случайной величиной с ненулевой дисперсией
 - Когда импульс влияет на соседние импульсы, накладываясь на них своими "хвостами"
 - Когда длительность импульса является случайной величиной с ненулевой дисперсией
 - Процесс формирования группового сигнала в системах с кодовым разделением каналов
 - 7. Межсимвольная интерференция является:
 - Вредной
 - Полезной
 - Зависит от способа формирования сигнала
 - Нейтральной
 - 8. Согласованный фильтр, бывает, заменяют:
 - Фильтром нижних частот
 - Коррелятором
 - Коррелятором с фильтром нижних частот
 - Фильтром верхних частот
 - 9. Коррелятор это устройство, которое вычисляет:
 - Интеграл по времени от входного сигнала
 - Произведение опорного сигнала и входного
 - Интеграл по времени от произведения опорного сигнала и входного
 - Свертку опорного сигнала с входным

- 10. Когерентный прием обязательно включает в себя:
- Амплитудный детектор
- Схему выделения сигнала "пилот-тон"
- Контур фазовой автоподстройки частоты
- Процесс формирования опорного колебания с точностью до фазы для последующего снятия закона модуляции
 - 11. Некогеретный прием обязательно включает в себя:
- Процесс формирования опорного колебания с точностью до частоты для последующего снятия закона модуляции
 - Схему выделения сигнала "пилот-тон"
 - Контур фазовой автоподстройки частоты
 - Частотный детектор
 - 12. Петля Костаса предназначена для:
 - Снятия дифференциального кодирования символов
- Автоматической подстройки частоты формируемого опорного колебания с точностью до фазы
 - Удвоения частоты формируемого колебания
 - 13. Модуляция QPSK позволяет передать:
 - 1.5 бита на символ
 - 4 бита на символ
 - 1 бит на символ
 - 2 бита на символ
 - 14. Модуляция GMSK позволяет передать:
 - 1.5 бита на символ
 - 4 бита на символ
 - 1 бит на символ
 - 2 бита на символ
 - 15. Модуляция QAM-16 позволяет передать:
 - 1.5 бита на символ
 - 4 бита на символ
 - 1 бит на символ
 - 2 бита на символ
 - 16. Более требовательна к отношению сигнал-шум модуляция:
 - GMSK
 - OPSK
 - QAM-16
 - BPSK
 - 17. Более требовательна к линейности выходного усилителя мощности модуляция:
 - QAM-16
 - OQPSK
 - GMSK
 - QPSK-pi/4
 - 18. Усилители мощности по степени линейности делятся на классы:
 - A,B,C
 - A,B,C; D,E,F
 - I, II, III
 - -0, 1, 2
- 19. Мощность теплового шума на входе малошумящего усилителя приемника прямо пропорциональна:
 - Коэффициенту шума малошумящего усилителя
 - Полосе частот принимаемого радиосигнала
 - Несущей частоте принимаемого радиосигнала
 - Существует сама по себе и ни от чего не зависит
 - 20. Коэффициент шума малошумящего усилителя это:

- Отношение сигнал-шум на входе усилителя, деленное на отношение сигнал-шум на его выходе
 - Уровень собственного шума усилителя, в dВm
 - Величина kT, где T температура окружающей среды, k постоянная Больцмана
- Разница коэффициентов усиления усилителя (в dB), измеренных для двух опорных температур

14.1.2. Экзаменационные тесты

- 1. Кодовое расстояние линейного блочного кода можно определить по проверочной матрице кода как:
 - Количество ненулевых столбцов
 - Максимальное количество линейно-независимых столбцов матрицы минус единица
 - Максимальное количество линейно-независимых столбцов матрицы
 - Максимальное количество линейно-независимых столбцов матрицы плюс единица
- 2. Величина взаимной информации по К. Шеннону определяется как логарифм отношения вероятностей:
 - P(x/y) / P(x)
 - P(x) / P(x/y)
 - P(x/y) / P(x,y)
 - P(x,y) / P(x)
 - 3. Сигнал не несет информации, если он:
 - 1) случайный;
 - 2) детерминированный;
 - 3) его мощность равна или меньше мощности шума;
- 4) таков, что в пункте приема часто не удается определить значение переданного сообщения.
 - 4. Для полного вероятностного описания m-ичного символа нужно задать:
 - 1) плотность вероятности;
 - 2) т-мерную плотность вероятности;
 - 3) математическое ожидание и дисперсию;
 - 4) ряд распределения.
 - 5. При передаче сигнала с понижением скорости ширина его спектра:
 - 1) увеличивается;
 - 2) уменьшается;
 - 3) не меняется;
 - 4) не меняется, но сам спектр сдвигается в область более низких частот.
- 6. Для полного вероятностного описания отрезка непрерывной случайной функции нужно задать:
 - 1) плотность вероятности каждого отсчета;
 - 2) n-мерную плотность вероятности при $n \to \infty$;
 - 3) математические ожидания и дисперсии;
 - 4) ряд распределения вероятностей реализаций.
- 7. Комбинации 0110110, 1010001, 0111110 сложите по модулю 2 и результат представьте в десятичной форме.
- 8. При передаче двоичной последовательности по радиолинии наибольшая полоса потребуется при использовании:
 - 1) AM;
 - 2) YM;
 - 3) ΦM;
 - 4) ОФМ.
 - 9. Декодирование по минимуму расстояния применяется для:
 - 1) обнаружения и (или) исправления ошибок в кодовой комбинации;
 - 2) определения кодового расстояния применяемого кода;
 - 3) определения расстояния между кодовыми комбинациями применяемого кода;
 - 4) повышения отношения сигнал/шум.

- 10. Кодовое расстояние кода численно равно:
- 1) расстоянию между двумя наиболее часто применяемыми кодовыми комбинациями;
- 2) количеству символов, в которых различаются две наиболее близкие друг к другу комбинации в кодовой таблице;
 - 3) минимальному весу кодовой комбинации;
 - 4) наиболее вероятному значению кратности возникающих ошибок.
 - 11. Энтропия некоторого источника информации определяется как:
 - Среднее значение собственной информации
 - Максимальное значение собственной информации
 - Минимальное значение собственной информации
 - Медианное значение собственной информации
 - 12. Помехоустойчивые коды бывают:
 - Блочными и потоковыми
 - Регулярными и нерегулярными
 - Однородными и неоднородными
 - Статическими и динамическими
 - 13. Информация по К. Шеннону выражается как:
 - Логарифм обратной вероятности
 - Величина обратной вероятности
 - Логарифм вероятности
 - Логарифм модуля вероятности
 - 14. Сверточные коды примечательны тем, что полностью определяются:
 - Набором порождающих полиномов
 - Кодовой таблицей
 - Порождающей матрицей
 - Порождающим полиномом
 - 15. Строки порождающей матрицы линейного блочного кода должны быть:
 - Ненулевыми
 - Разными
 - Линейно-независимыми
 - Линейно-зависимыми
 - 16. Число строк проверочной матрицы линейного блочного кода определяется:
 - Количеством проверочных символов
 - Количеством информационных символов
 - Зависит от дополнительных условий
 - Кодовым расстоянием кода
- 17. Свойство префикса некоторого кода (например, кодов Хаффмана или Шеннона-Фано) заключается в том, что:
 - Ни одна приставка некоторого кодового слова не является кодовым словом
 - Все приставки являются кодовыми словами
 - Кодовые слова имеют одинаковую длину
 - Кодовые слова имеют разную длину
 - 18. Код Лемпеля-Зива (Lempel-Ziv) является:
 - Словарным кодом
 - Древовидным кодом подобно коду Хаффмана
 - Кодом с хеш-таблицей (hash table)
 - Кодом с линейным предсказанием
 - 19. Коды Рида-Соломона примечательны тем, что они:
 - Дают максимально возможное кодовое расстояние и являются недвоичными
 - Являются недвоичными
 - Имеют порождающий полином, который не раскладывается на множители
 - Имеют кодовое расстояние, равное количеству проверочных символов
 - 20. Столбцы проверочной матрицы линейного блочного кода фактически являются:
 - Запрещенными кодовыми словами

- Разрешенными кодовыми словами
- Синдромами для однократных ошибок
- Векторами однократных ошибок

14.1.3. Темы контрольных работ

Вероятностное описание символа

Вероятностное описание двух символов

Аналого-цифровое преобразование непрерывных сигналов

Нормальные случайные величины

Корректирующие коды

Линейные блочные коды

Битовая вероятность ошибки при передаче цифрового сигнала

Регенерация цифрового сигнала при передаче на большие расстояния

14.1.4. Темы лабораторных работ

Декодирование сигналов

Формирование и обработка ЧМ-сигнала с непрерывной фазой

14.1.5. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала необходимо осуществлять медленно, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются термины, следует выяснить их значение для понимания дальнейшего материала;
 - необходимо осмысливать прочитанное и изученное, отвечать на предложенные вопросы.

Студенты могут получать индивидуальные консультации с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия в форме вебинаров. Расписание вебинаров публикуется в кабинете студента на сайте Университета. Запись вебинара публикуется в электронном курсе по дисциплине.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения	
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка	

С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.