МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Директор департамента образования

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическая логика и теория алгоритмов

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 09.03.01 Информатика и вычислительная техника

Направленность (профиль) / специализация: **Программное обеспечение средсти** вычислительной техники и автоматизированных систем

Форма обучения: заочная (в том числе с применением дистанционных образовательных

технологий) Факультет: ФДО, Факультет дистанционного обучения

Кафедра: АСУ, Кафедра автоматизированных систем управления

Курс: **2** Семестр: **4**

Учебный план набора 2018 года

Распределение рабочего времени

№	Виды учебной деятельности	4 семестр	Всего	Единицы
1	Самостоятельная работа под руководством преподавателя	16	16	часов
2	Контроль самостоятельной работы	4	4	часов
3	Всего контактной работы	20	20	часов
4	Самостоятельная работа	151	151	часов
5	Всего (без экзамена)	171	171	часов
6	Подготовка и сдача экзамена	9	9	часов
7	Общая трудоемкость	180	180	часов
			5.0	3.E.

Контрольные работы: 4 семестр - 2

Экзамен: 4 семестр

Томск 2018

Рассмотрена	и одс	брена на	заседании	кафедры
протокол №	6	от «17	» <u>5</u>	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

государственного образовательного подготовки (специальности) 09.03.	плины составлена с учетом требований федерального стандарта высшего образования (ФГОС ВО) по направлению 01 Информатика и вычислительная техника, утвержденного брена на заседании кафедры АСУ «» 20_
Разработчик:	
доцент каф. АСУ	А. В. Афонасенко
Заведующий обеспечивающей каф. АСУ	А. М. Кориков
Рабочая программа дисципли	ны согласована с факультетом и выпускающей кафедрой:
Декан ФДО	И. П. Черкашина
Заведующий выпускающей каф. АСУ	А. М. Кориков
Эксперты:	
Доцент кафедры технологий электронного обучения (ТЭО)	Ю. В. Морозова
Доцент кафедры автоматизированных систем управления (АСУ)	А. И. Исакова

1. Цели и задачи дисциплины

1.1. Цели дисциплины

сформировать у студентов общекультурные и профессиональные компетенции, удовлетворяющих требованиям основной образовательной программы бакалавриата, а также в подготовке к соответствующим видам профессиональной деятельности и решению профессиональных задач.

1.2. Задачи дисциплины

- в результате изучения дисциплины студенты должны: освоить формальный
- язык математической логики (в частности, язык теории множеств); освоить различные
- формализации понятий алгоритма и вычислимой функции; освоить основные знания о
- сложности алгоритмов.

_

2. Место дисциплины в структуре ОПОП

Дисциплина «Математическая логика и теория алгоритмов» (Б1.Б.17) относится к блоку 1 (базовая часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Дискретная математика, Математика, Программирование.

Последующими дисциплинами являются: Теория оптимального управления, Теория систем.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОК-7 способностью к самоорганизации и самообразованию;

В результате изучения дисциплины обучающийся должен:

- знать 1) цели и задачи математической логики и ее краткую историю; 2) формальный язык математической логики (язык логики предикатов) для записи математических утверждений; 3) логику высказываний; 4) основы логики предикатов; 5) основные понятия теории множеств; 6) основные понятия формальных аксиоматических теорий; 7) различные виды математических доказательств; 8) формальные представления алгоритмов и вычислимых функций (машины Тьюринга и частично-рекурсивные функции); 9) основные понятия сложности алгоритмов и задач; 10) общеизвестные сложные задачи с точки зрения вычислений.
- **уметь** 1) отличать бессмысленные утверждения от осмысленных утверждений; 2) отличать доказанные утверждения от недоказанных утверждений; 3) применять основные результаты логики высказываний на практике; 4) уметь применять следующие виды доказательств: прямое, от противного, математическая индукция; 5) определять сложность алгоритмов и сравнивать алгоритмы по сложности.
- **владеть** 1) способностью переводить утверждения с естественного языка на формальный и обратно.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		4 семестр
Контактная работа (всего)	20	20
Самостоятельная работа под руководством преподавателя (СРП)	16	16
Контроль самостоятельной работы (КСР)	4	4
Самостоятельная работа (всего)	151	151
Подготовка к контрольным работам	59	59

Самостоятельное изучение тем (вопросов) теоретической части курса	92	92
Всего (без экзамена)	171	171
Подготовка и сдача экзамена	9	9
Общая трудоемкость, ч	180	180
Зачетные Единицы	5.0	

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	СРП, ч	КСР, ч	Сам. раб., ч	Всего часов (без экзамен а)	Формируемые компетенции
	4 семестј)			
1 Миссия математической логики.	1	4	11	12	ОК-7
2 Краткая история логики.	1		11	12	OK-7
3 Основы теории множеств.	2		20	22	ОК-7
4 Пропозициональная логика.	2		19	21	OK-7
5 Языки первого порядка.	2		18	20	ОК-7
6 Аксиоматический метод.	2		18	20	OK-7
7 Математическое доказательство.	2		18	20	OK-7
8 Алгоритмы и вычислимые функции.	2		18	20	ОК-7
9 Сложность вычислений.	2		18	20	ОК-7
Итого за семестр	16	4	151	171	
Итого	16	4	151	171	

5.2. Содержание разделов дисциплины (самостоятельная работа под руководством преподавателя)

Содержание разделов дисциплин (самостоятельная работа под руководством преподавателя) приведено в таблице 5.2.

Таблица 5.2 - Содержание разделов дисциплин (самостоятельная работа под руководством

преподавателя)

Названия разделов	Содержание разделов дисциплины (самостоятельная работа под руководством преподавателя)	Трудоемкость, ч	Формируемые компетенции
	4 семестр		
1 Миссия математической логики.	Что такое логика. Для чего нужно изучать математику. Цели логики, решаемые задачи. Софизмы и парадоксы. Отношение к реальному миру.	1	ОК-7
	Итого	1	
2 Краткая история логики.	Зарождение логики в Древней Греции. Средние века. Становление	1	ОК-7

	математической логики. Современная математическая логика.		
	Итого	1	
3 Основы теории множеств.	Операции над множествами, отношения, функции, мощность множеств.	2	OK-7
	Итого	2	
4 Пропозициональная логика.	Язык логики высказываний. Тавтологии и равносильности.	2	OK-7
	Итого	2	
5 Языки первого порядка.	Предикаты, кванторы, термы, формулы. Интерпретация формул. Перевод с естественного языка на логический и обратно.	2	OK-7
	Итого	2	
6 Аксиоматический метод.	Формальные аксиоматические теории. Исчисление высказываний. Теории первого порядка.	2	OK-7
	Итого	2	
7 Математическое доказательство.	Индукция. Математическая индукция. Различные виды доказательств в математике.	2	OK-7
	Итого	2	
8 Алгоритмы и вычислимые функции.	Частично-рекурсивные функции. Машины Тьюринга. Тезис Черча. Алгоритмическая неразрешимость.	2	OK-7
	Итого	2	
9 Сложность вычислений.	Асимптотические обозначения. Алгоритмы и их сложность. Сложность задач.	2	OK-7
	Итого	2	
Итого за семестр		16	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование дисциплин	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин								
,, ,	1	2	3	4	5	6	7	8	9
Предшествующие дисциплины									
1 Дискретная математика	+	+	+	+	+		+	+	+
2 Математика	+	+	+	+	+	+	+	+	+
3 Программирование	+	+		+				+	+
Последующие дисциплины									

1 Теория оптимального управления		+	+	+		+	+	+
2 Теория систем	+	+	+	+	+		+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Компетенци		Виды занятий		Фотогу мометома
И	СРП	КСР	Сам. раб.	Формы контроля
ОК-7	+	+	+	Контрольная работа, Экзамен, Проверка контрольных работ, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Не предусмотрено РУП.

8. Контроль самостоятельной работы

Виды контроля самостоятельной работы приведены в таблице 8.1.

Таблица 8.1 – Виды контроля самостоятельной работы

№	Вид контроля самостоятельной работы	Трудоемкость (час.)	Формируемые компетенции			
4 семестр						
1	Контрольная работа с автоматизированной проверкой	2	OK-7			
2	Контрольная работа	2	OK-7			
Итого)	4				

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
4 семестр				
1 Миссия математической логики.	Самостоятельное изучение тем (вопросов) теоретической части курса	7	ОК-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	4		
	Итого	11		
2 Краткая история логики.	Самостоятельное изучение тем (вопросов) теоретической части курса	7	ОК-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен

	Подготовка к контрольным работам	4		
	Итого	11		
3 Основы теории множеств.	Самостоятельное изучение тем (вопросов) теоретической части курса	12	OK-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	8		
	Итого	20		
4 Пропозициональна я логика.	Самостоятельное изучение тем (вопросов) теоретической части курса	11	ОК-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	8		
	Итого	19		
5 Языки первого порядка.	Самостоятельное изучение тем (вопросов) теоретической части курса	11	OK-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	7		
	Итого	18		
6 Аксиоматический метод.	Самостоятельное изучение тем (вопросов) теоретической части курса	11	OK-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	7		
	Итого	18		
7 Математическое доказательство.	Самостоятельное изучение тем (вопросов) теоретической части курса	11	OK-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	7		
	Итого	18		
8 Алгоритмы и вычислимые функции.	Самостоятельное изучение тем (вопросов) теоретической части курса	11	OK-7	Контрольная работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	7		
	Итого	18		
9 Сложность	Самостоятельное	11	ОК-7	Контрольная

вычислений.	изучение тем (вопросов) теоретической части курса			работа, Проверка контрольных работ, Тест, Экзамен
	Подготовка к контрольным работам	7		
	Итого	18		
	Выполнение контрольной работы	4	OK-7	Контрольная работа
Итого за семестр		151		
	Подготовка и сдача экзамена	9		Экзамен
Итого		160		

10. Контроль самостоятельной работы (курсовой проект / курсовая работа) Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся Рейтинговая система не используется.

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

1. Зюзьков, В.М. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие / В.М. Зюзьков. — Томск: ТУСУР, ФДО, 2015. Доступ из личного кабинета студента. — Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 04.09.2018).

12.2. Дополнительная литература

1. Перемитина, Т.О. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие / Т.О. Перемитина – Томск: ТУСУР, 2016. Доступ из личного кабинета студента. — Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 04.09.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Зюзьков, В.М. Математическая логика и теория алгоритмов: электронный курс/ В.М. Зюзьков. Томск: ТУСУР, ФДО, 2015. Доступ из личного кабинета студента.
- 2. Зюзьков, В.М. Математическая логика и теория алгоритмов [Электронный ресурс]: методические указания по организации самостоятельной работы для студентов заочной формы обучения направления подготовки 09.03.01 Информатика и вычислительная техника, обучающихся с применением дистанционных образовательных технологий / В.М. Зюзьков Томск : ФДО, ТУСУР, 2018. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 04.09.2018).
- 3. Зюзьков, В.М. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное методическое пособие/ В.М. Зюзьков. Томск: ТУСУР, ФДО, 2015. Доступ из личного кабинета студента. Режим доступа: https://study.tusur.ru/study/library/ (дата обращения: 04.09.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

1. ЭБС «Юрайт»: www.biblio-online.ru (доступ из личного кабинета студента по ссылке https://biblio.fdo.tusur.ru/)

13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение дисциплины

Кабинет для самостоятельной работы студентов

учебная аудитория для проведения занятий лабораторного типа, помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- Коммутатор MicroTeak:
- Компьютер PENTIUM D 945 (3 шт.);
- Компьютер GELERON D 331 (2 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-zip
- Google Chrome (с возможностью удаленного доступа)
- Kaspersky Endpoint Security 10 для Windows
- LibreOffice (с возможностью удаленного доступа)
- Microsoft Windows
- OpenOffice

13.1.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;

- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями** зрениями предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

Вопрос 1.

В цитате из Джеймса Тёрбера

«Если вы можете трогать часы и никогда не завести их, то вы можете завести часы, их не трогая» описывается логический закон. Какой?

- 1. Закон противоречия.
- 2. Модус поненс.
- 3. Закон контропозиции.
- 4. Закон исключенного третьего.

Вопрос 2.

Кто из математиков открыл теорию множеств?

- 1. Д. Буль.
- 2. Г. Фреге.
- 3. Г. Кантор.
- 4. Евклид.

Вопрос 3.

Трактат Н. Бурбаки «Начала математики» развивает формальную аксиоматическую систему на основе:

- 1. логики;
- 2. алгебры;
- 3. теории множеств;
- 4. геометрии.

Вопрос 4.

Какое из приведенных ниже отношений является отношением линейного порядка на $A=\{a,b,c\}$?

- 2. {<a,a>, <b,b>, <c,c>, <a,c>, <b,c>, <a,b>};
- 3. $\{\langle a,a\rangle, \langle b,b\rangle, \langle c,c\rangle, \langle c,a\rangle, \langle b,c\rangle, \langle a,b\rangle\}$.

Вопрос 5.

Пусть на множестве целых положительных чисел задано отношение $n \rho m \Leftrightarrow n=2m$. Какие свойства не выполняются для отношения $n \rho m$, чтобы ρ было отношением частичного порядка?

- 1. рефлексивность;
- 2. антисимметричность;
- 3. транзитивность.

Вопрос 6.

Являются ли отображениями следующие отношения на множестве живущих людей?

- 1. Каждому человеку ставится в соответствие его дочь.
- 2. Каждому человеку ставится в соответствие его мать.
- 3. Каждому человеку ставится в соответствие его год рождения.
- 4. Каждому человеку ставится в соответствие его брат.

Вопрос 7.

Какое из следующих утверждений правильно?

Два множества А и В имеют одинаковую мощность, если

- 1. существует инъекция Ав В;
- 2. существует биекция А на В;
- 3. существует сюръекция А на В.

Вопрос 8.

Пусть A — произвольное высказывание, M — любое истинное высказывание.

Тогда истинностное значение высказывания $A\supset M$ есть

- 1. Истина;
- 2. Ложь;
- 3. Такое же, как у A;
- 4. Противоположно A.

Вопрос 9.

Универсум – множество животных.

Предикаты:

- C(x) истина тогда и только тогда, когда животное x есть кошка.
- K(x) истина тогда и только тогда, когда животное x есть цыпленок.

Выберите правильный перевод на язык логики предикатов.

«Некоторые цыплята не кошки».

- 1. $\forall x(K(x) \& \neg C(x))$;
- 2. $\exists x (K(x) \& \neg C(x));$
- 3. $\exists x(K(x) \supset \neg C(x));$
- 4. $\forall x(K(x) \supset \neg C(x))$.

Вопрос 10.

Универсум – школьники.

Предикаты:

- А(х) истина тогда и только тогда, когда школьник х учится хорошо.
- В(х) истина тогда и только тогда, когда школьник х поступит в университет.

Выберите правильный перевод на язык логики предикатов.

«Если будешь хорошо учиться, поступишь в университет, а иначе провалишься».

- 1. $\forall x(A(x) \supset B(x))$;
- 2. $\exists x (A(x) \& B(x)) \& \exists x (\neg A(x) \& \neg B(x));$
- 3. $\forall x(A(x) \supset B(x)) \& \forall x(\neg A(x) \supset \neg B(x));$

4. $\forall x(A(x) \supset B(x)) \lor \forall x(\neg A(x) \supset \neg B(x)).$

Вопрос 11.

Задан некоторый язык первого порядка с константами a и b одноместными предикатными символами P и Q. Пусть задана интерпретация, носитель которой состоит из двух элементов $\{a,b\}$. Интерпретация предикатов: P(a)=1, P(b)=1; Q(a)=1, Q(b)=0. Найдите истинностные значения формул в данной интерпретации (1- истина, 0- ложь).

- 1. $\exists x Q(x) \supset \forall x Q(x)$.
- 2. $\exists y \forall x (P(x) \& Q(y))$.

Вопрос 12.

Следующие утверждения говорят о формальных аксиоматических теориях.

Какие утверждения правильны?

- 1. Теорию T можно считать формальной, если построен алгоритм для проверки правильности рассуждений с точки зрения принципов теории T.
- 2. Стандарт правильности рассуждений для теории Т определен настолько точно, что проверке правильности готовых доказательств можно передать компьютеру.
- 3. Если поиск доказательства теорем теории нельзя передать компьютеру, то она не является формальной аксиоматической.

Вопрос 13.

Какие формулы являются теоремами (или аксиомами) исчисления предикатов?

- 1. $A \supset A \lor B$;
- $2. A \lor B \supset B$;
- $3. A \lor \neg A.$

Вопрос 14.

Какие аксиомы содержит исчисление предикатов первого порядка?

- 1. Логические аксиомы;
- 2. Аксиомы равенства;
- 3. Собственные аксиомы.

Вопрос 15.

Для каких целей используется индукция в математике (не путайте с математической индукции)?

- 1. Для проверки доказательства.
- 2. Для получения гипотезы.
- 3. Для доказательства.

Вопрос 16.

Какие утверждения верны?

- 1. Принцип индукции по построению применяется только в геометрии.
- 2. Принцип индукции по построению связан с определением объектов по построению.
- 3. Множество объектов, определяемых индуктивным определением, включает базисные объекты и замкнуто относительно индуктивного перехода.

Вопрос 17.

Доказательство того, что «если m и n — произвольные положительные целые числа такие, что $m \times n \le 100$, то либо $m \le 10$, либо $n \le 10$ » можно провести в следующем виде:

Доказательство. Исходному утверждению равносильно следующее высказывание: «Если m > 10 и n > 10, то $m \times n > 100$ », что очевидно.

Какой вид доказательства использовался?

- 1. Доказательство от противного.
- 2. Доказательство с помощью контропозиции.
- 3. Доказательство с помощью теоремы о дедукции.

Вопрос 18.

Дана гипотеза. Что доказывает контпример?

- 1. Истинность гипотезы.
- 2. Ложность гипотезы.
- 3. Истинность отрицания гипотезы.

Вопрос 19.

Зачем кроме неформального определения алгоритма дается и формальное определение алгоритма?

- 1. В силу математической традиции.
- 2. Чтобы изучать алгоритмы как математические объекты.
- 3. Неформальное определение алгоритма неудовлетворительно для понимания.

Вопрос 20.

Какие следующие формулировки является формулировками тезиса Черча?

- 1. Любая задача, имеющая решение, имеет и алгоритм для решения.
- 2. Интуитивно и неформально определенный класс вычислимых функций совпадает с классом частично-рекурсивных функций.
- 3. Интуитивно и неформально определенное понятие вычислимости совпадает с любым известным формальным понятием вычислимости.

14.1.2. Экзаменационные тесты

Вопрос 1.

Рассуждение либо высказывание, в котором, пользуясь средствами, не выходящими (по видимости) за рамки логики, приходим к заведомо неприемлемому результату (обычно к противоречию), называется ...

- 1. Парадокс;
- 2. Софизм;
- 3 Логическая ощибка

Вопрос 2.

Кто из философов является основоположником реализма — философского направление в математике, последователи которого считают, что математические объекты (сущности) существуют независимо от математиков?

- 1. Пифагор;
- 2. Сократ;
- 3. Платон;
- 4. Аристотель.

Вопрос 3.

Какие утверждения правильны?

- 1. Первые серьезные результаты в теории алгоритмов А. Черч сделал до изобретения компьютеров.
 - 2. Гильберт доказал неполноту математики.
 - 3. Бурбаки жил в начале 19 века.
 - 4. Рассел обнаружил парадокс в теории множеств Кантора.

Вопрос 4.

Какие утверждения правильны?

- 1. Николя Бурбаки французский математик.
- 2. Трактат Н. Бурбаки «Начала математики» рассчитан на первоначальное обучение

математики.

- 3.Н. Бурбаки продолжает свою деятельность и в настоящее время.
- 4.Строгость изложения трактата Н. Бурбаки сформировала современный стандарт строгости математических текстов.

Вопрос 5.

Какие следующие утверждения истинны?

- 1. A $\triangle \varnothing = A$;
- 2. A∩A=Ø;
- 3. Если $A\subseteq B$, то $A\cup B=A$.

Вопрос 6.

Отметьте выражение (или выражения), описывающее закрашенное множество. Может быть несколько правильных выражений.

- 1. $(A \cap B) \cap C$;
- 2. $(A \cap B \cap C) \cup (B \cap C) \cup (A \cap C)$;
- 3. $(B \cap C) \cup (A \cap C)$;
- 4. $(A \cup B \cup C) \setminus (B \cap A)$.

Вопрос 7.

Пусть $A \{a, b, c, d, e\}$ и заданы три отношения на A. Какие из этих отношений являются рефлексивными?

- 1. $\{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, c \rangle, \langle d, d \rangle, \langle e, e \rangle\}$;
- 2. {<a,b>, <b,a>, <b,c>,<b,d>, <e,e>, <d,e>, <c,b>};
- 3. $\{\langle a,b\rangle, \langle a,a\rangle, \langle b,c\rangle, \langle b,b\rangle, \langle e,e\rangle, \langle b,a\rangle, \langle c,b\rangle, \langle c,c\rangle, \langle d,d\rangle, \langle a,c\rangle, \langle c,a\rangle\}$.

Вопрос 8.

Какие из следующих утверждений правильны?

- 1. Пусть A и B конечные множества с одинаковым количеством элементов, тогда существует биекция A на B.
- 2. Пусть A бесконечное множество, а B конечное множество, тогда не существует биекция A на B.
- 3. Пусть A бесконечное множество, а B конечное множество, тогда существует биекция B на A.
 - 4. Пусть А и В бесконечные множества и А ⊂ В, тогда не существует биекции А на В.

Вопрос 9.

Раймонд Смаллиан встретил на острове рыцарей и лжецов человека, который произнес высказывание:

«Я рыцарь и $2 \times 2 = 4$ ».

Кто этот человек?

- 1. Рыцарь;
- 2. Лжец:
- 3. Он или рыцарь, или лжец. Точно сказать нельзя.
- 4. Он не может быть ни рыцарем, ни лжецом.

Вопрос 10.

Какие пары формул действительно являются равносильностями?

- 1. $A \lor (B \& C) \equiv (A \lor B) \& (A \lor C)$;
- 2. $A \& (B \lor A) \equiv (A \& B) \lor (A \& \neg A)$;
- $3. A & (A \lor B) \equiv \neg B$.

Вопрос 11.

Универсум – множество животных.

Предикаты:

- С(х) истина тогда и только тогда, когда животное х есть кошка.
- К(х) истина тогда и только тогда, когда животное х есть цыпленок.

Выберите правильный перевод на язык логики предикатов.

«Некоторые цыплята не кошки»:

- 1. $\forall x(K(x) \& \neg C(x));$
- 2. $\exists x(K(x) \& \neg C(x));$
- 3. $\exists x(K(x) \supset \neg C(x));$
- $4. \forall x (K(x) \supset \neg C(x)).$

Вопрос 12.

Универсум – множество людей.

Предикаты:

- S(x) человек x студент.
- C(x) человек x старательный.
- O(x) человек x отличник.

Выберите правильный перевод на язык логики предикатов

«Быть старательным студентом недостаточно, чтобы быть отличником».

- 1. $\neg \forall x (S(x) \& C(x) \supset O(x))$.
- 2. $\exists x (S(x) \& C(x) \& O(x)) \& \exists x (S(x) \& C(x) \& \neg O(x)).$
- 3. $\forall x (S(x) \& C(x) \& \neg O(x))$.

Вопрос 13.

Какие формулы являются теоремами (или аксиомами) исчисления предикатов?

- 1. $A \& B \supset A$;
- 2. $A \& B \supset B$;
- $3. A\& \neg A.$

Вопрос 14.

Выберите правильные утверждения:

- 1. Реальный мир описывается только математикой, в которой имеют место аксиома параллельности Евклида, гипотеза контиуума и отрицание аксиомы выбора.
- 2. Реальный мир описывается только математикой, в которой имеют место аксиома параллельности Евклида, гипотеза контиуума и аксиома выбора.
- 3. Мы не знаем, какой на самом деле реальный мир и у математиков есть выбор, считать ли следующие утверждения аксиомами или к таковым отнести их отрицания: аксиома о параллельных, аксиома выбора и гипотеза континуума.

Вопрос 15.

Для каких целей используется дедукция в математике (не путайте с математической индукции)?

- 1. Для проверки доказательства.
- 2. Для получения гипотезы.
- 3. Для доказательства.

Вопрос 16.

Какой знаменитый результат был доказан компьютером?

- 1. Задача о пяти красках.
- 2. Задача о четырех красках.
- 3. Теорема Пифагора.

Вопрос 17.

Какие утверждения правильны?

- 1. Определение частично-рекурсивных функций начинается с введения базисных (исходных) функций, куда входят все арифметические функции с натуральными аргументами.
- 2. Суперпозиция функций простейший способ определения новых частично-рекусивных функций из уже имеющихся частично-рекурсивных функций.
- 3. Один из способов определения новых частично-рекусивных функций из уже имеющихся частично-рекурсивных функций есть рекурсия без всяких ограничений.

Вопрос 18.

Какой из следующих подходов является формализацией интуитивного понимания алгоритма и вычислимости:

- 1. объектно-ориентированное программирование;
- 2. частично-рекурсивные функции;
- 3. машины Тьюринга.

Вопрос 19.

Какие утверждения правильны?

- 1. Предикат называется разрешимым, если есть алгоритм, который для любого допустимого значения аргумента определяет, является ли значение предиката истинным или ложным.
- 2. Одноместный предикат называется разрешимым, если для любого допустимого значения аргумента предикат является истинным или ложным.
 - 3. Предикат называется разрешимым, если он не ложен для любого значения аргумента.

Вопрос 20.

Какие из следующих проблем являются разрешимыми?

- 1. Является ли данная формула исчисления высказываний тавтологией?
- 2. Является ли данная формула исчисления высказываний противоречием?
- 3. Является ли данная формула логики предикатов общезначимой?
- 4. Является ли данная формула исчисления высказываний выполнимой?
- 5. Имеет ли решение диофантовое уравнение? (Речь идет о произвольных произвольном диофантовом уравнении.)

14.1.3. Темы контрольных работ

Пример варианта задания контрольной работы с автоматизированной проверкой по теме «Математическая логика и теория алгоритмов».

Вопрос 1.

Выберите верное утверждение:

- 1. Естественный язык всегда проще формального.
- 2. Дедукция всегда дает верный результат.
- 3. Индукция не используется в точных науках.

4. Чтобы человек стал успешным в жизни, он не обязан всегда логически правильно рассуждать.

Вопрос 2.

Какие следующие утверждения истинны?

- 1. A∪Ø=A;
- 2. A A = A;
- 3. Если А∩В=А, то А⊆В.

Вопрос 3.

Пусть A — произвольное высказывание, \mathcal{I} — любое ложное высказывание.

Тогда истинностное значение высказывания $A \vee \mathcal{I}$ есть:

- 1. Истина;
- 2. Ложь;
- 3. Такое же, как у A;
- 4. Противоположно A.

Вопрос 4.

Универсум – множество животных.

Предикаты:

- A(x) истина тогда и только тогда, когда животное x человек.
- B(x) истина тогда и только тогда, когда животное x свинья.

Выберите правильный перевод на язык логики предикатов.

«Чтобы не быть человеком необходимо быть свиньей».

- 1. $\forall x (\mathbf{B}(x) \supset \neg A(x))$;
- 2. $\exists x (A(x) \& \neg B(x))$;
- 3. $\exists x (A(x) \supset \neg B(x));$
- 4. $\forall x (\neg A(x) \supset \mathbf{B}(x))$.

Вопрос 5.

Задан некоторый язык первого порядка с константами а и b одноместными предикатными символами P и Q. Пусть задана интерпретация, носитель которой состоит из двух элементов $\{a, b\}$. Интерпретация предикатов: P(a) 1, P(b) 1; Q(a) 1, Q(b) 0. Найдите истинностные значения формул в данной интерпретации (1 - истина, 0 - ложь).

- 1. $\exists x Q(x) \lor \forall x Q(x)$;
- 2. $\forall x \exists y (P(x) \& Q(y))$.

Вопрос 6.

Рассуждения какого вида являются математическими объектами?

- 1. Интуитивное;
- 2. Формальное;
- 3. Индуктивное;
- 4. Неформальное.

Вопрос 7.

Выберите верные утверждения:

- 1. Суперпозиция и примитивная рекурсия из всюду определенных функций получают всюду определенные функции.
 - 2. Примитивная рекурсия равносильна использованию цикла for.
- 3. В число базисных функций при определении частично-рекурсивных функций входит нигде не определенная функция.

Вопрос 8.

Выберите верные утверждения.

- 1. Мы можем описывать машину Тьюринга как некий черный ящик с лентой. Лента разбита на ячейки, и каждая ячейка может содержать пустой символ 0 либо непустой символ 1. Лента потенциально бесконечна в обе стороны.
- 2. В начале лента содержит числа входа, в конце число-выход. В промежуточное время лента используется как пространство памяти для вычисления.
- 3. Список инструкций для машины Тьюринга является типичной программой на машинном коде, похожий на программы для современных конструкторов.

Вопрос 9.

Выберите верные утверждения.

- 1. Мы можем описывать машину Тьюринга как некий черный ящик с лентой. Лента разбита на ячейки, и каждая ячейка может содержать пустой символ 0 либо непустой символ 1. Лента потенциально бесконечна в обе стороны.
- 2. В начале лента содержит числа входа, в конце число-выход. В промежуточное время лента используется как пространство памяти для вычисления.
- 3. Список инструкций для машины Тьюринга является типичной программой на машинном коде, похожий на программы для современных конструкторов.

Вопрос 10.

Какие утверждения правильны?

- 1. 100n O(n/100)
- 2. $n O(n^2)$
- 3. $n^2 O(n)$
- 4. n/100 O(100n)

Пример варианта задания текстовой контрольной работы по теме «Математическая логика и теория алгоритмов».

Задание 1.

Следующее утверждение для произвольных множеств докажите или опровергните:

$$(A \cup B) \cap C = A \cup (B \cap C)$$
.

Задание 2.

Следующее утверждение докажите или опровергните:

$$A \cap B \subseteq C \bowtie A \cup B \subseteq C \Rightarrow A \cap C = \emptyset$$
.

Задание 3.

Что можно сказать об истинностном значении высказывания:

$$p \supset \neg s$$
, если $p \supset q \equiv H$, $\neg s \supset \neg q \equiv \Pi$?

Задание 4.

Является ли тавтологией формула:

$$((A \lor B) \& (A \lor C) \& (B \lor D) \& (C \lor D)) \sim ((A \& D) \lor (B \& C))?$$

Залание 5.

Переведите с естественного языка на язык логики предикатов:

Все девочки боятся лягушек и мышей.

Задание 6.

Переведите с естественного языка на язык логики предикатов:

Две прямые параллельны тогда и только тогда, когда они одновременно пересекают третью либо не пересекают её.

Задание 7.

Для бинарного отношения х ρ у \Leftrightarrow «х перпендикулярна у», определенного на множестве всех прямых плоскости, выясните, какими свойствами оно обладает (рефлексивность, симметричность, антисимметричность, транзитивность) и какими не обладает.

Задание 8.

Для бинарного отношения $X \ \rho \ Y \Leftrightarrow «X \subseteq Y» (X и Y — множества из целых чисел) выясните, какими свойствами оно обладает (рефлексивность, симметричность, антисимметричность, транзитивность) и какими не обладает.$

Задание 9.

Докажите, используя математическую индукцию для чисел Фибоначчи:

fib(m + n) = fib(m - 1) fib(n) + fib(m) fib(n + 1).

(По определению, fib(1) = fib(2) = 1, fib(n) = fib(n-1) + fib(n-2) для n > 2)

Подсказка: индукция по n, базовые случаи n = 1 и n = 2.

Задание 10.

Расположите следующие 5 функций в порядке увеличения скорости роста (каждая функция есть O (следующая)): 1000n, 666, 554 ln (ln n), n!.

14.1.4. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала необходимо осуществлять медленно, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются термины, следует выяснить их значение для понимания дальнейшего материала;
 - необходимо осмысливать прочитанное и изученное, отвечать на предложенные вопросы.

Студенты могут получать индивидуальные консультации с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия в форме вебинаров. Расписание вебинаров публикуется в кабинете студента на сайте Университета. Запись вебинара публикуется в электронном курсе по дисциплине.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

эдеревы и инванидев		
Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.