МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Директор департамента образования

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория и техника передачи информации

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: 11.04.02 Инфокоммуникационные технологии и

системы связи

Направленность (профиль) / специализация: Инфокоммуникационные системы беспроводного

широкополосного доступа Форма обучения: **очная**

Факультет: РТФ, Радиотехнический факультет

Кафедра: ТОР, Кафедра телекоммуникаций и основ радиотехники

Курс: **1** Семестр: **2**

Учебный план набора 2017 года

Распределение рабочего времени

$N_{\underline{0}}$	Виды учебной деятельности	2 семестр	Всего	Единицы
1	Лекции	18	18	часов
2	Практические занятия	18	18	часов
3	Лабораторные работы	24	24	часов
4	Всего аудиторных занятий	60	60	часов
5	Самостоятельная работа	84	84	часов
6	Всего (без экзамена)	144	144	часов
7	Подготовка и сдача экзамена	36	36	часов
8	Общая трудоемкость	180	180	часов
		5.0	5.0	3.E.

Экзамен: 2 семестр

Томск 2018

Рассмотрена и одобрена на заседании кафедры протокол № 12 от « 4 » ____7 ___2018 г.

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа дисциплины составлена с учетом требований федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 11.04.02 Инфокоммуникационные технологии и системы связи, утвержденного 30.10.2014 года, рассмотрена и одобрена на заседании кафедры РТС 26 июня 2018 года, протокол № 11.

Разработчик:	
доцент каф. РТС	А. В. Новиков
Заведующий обеспечивающей каф. PTC	С. В. Мелихов
Рабочая программа дисциплины согласов	ана с факультетом и выпускающей кафедрой:
Декан РТФ	К. Ю. Попова
Заведующий выпускающей каф. ТОР	А. А. Гельцер
Эксперты:	
Доцент кафедры радиотехнических систем (РТС)	В. А. Громов
Доцент кафедры телекоммуникаций и основ радиотехники (TOP)	С. И. Богомолов
r ()	

1. Цели и задачи дисциплины

1.1. Цели дисциплины

Формирование представлений об особенностях современных и перспективных систем передачи информации.

1.2. Задачи дисциплины

- Изучение современных методов модуляции и кодирования.
- Приобретение навыков компьютерного моделирования систем связи.
- Овладение навыками чтения справочной документации, в том числе на английском языке.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория и техника передачи информации» (Б1.В.ОД.2) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Теория телетрафика, Теория электромагнитной совместимости радиоэлектронных средств и систем, Формирование и обработка сигналов систем связи, Цифровая обработка сигналов систем связи.

Последующими дисциплинами являются: Системы и сети передачи данных, Теория построения инфокоммуникационных сетей и систем.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПК-8 готовностью использовать современные достижения науки и передовые инфокоммуникационные технологии, методы проведения теоретических и экспериментальных исследований в научно-исследовательских работах в области ИКТиСС;
- ПК-11 готовностью к проведению групповых (семинарских и лабораторных) занятий в организации по специальным дисциплинам на основе современных педагогических методов и методик, способностью участвовать в разработке учебных программ и соответствующего методического обеспечения для отдельных дисциплин основной профессиональной образовательной программы высшего образования образовательной организации, готовностью осуществлять кураторство научной работы обучающихся;

В результате изучения дисциплины обучающийся должен:

знать -- Корректирующие коды: Фундаментальное свойство линейных блочных кодов. Правило кодирования линейным блочным кодом. Структуру порождающих и проверочных матриц линейного блочного кода в систематической форме. Правило вычисления синдрома линейного блочного кода по проверочной матрице. Роль синдрома при обнаружении/исправлении ошибок, а также восстановлении стертых символов. Способ распределения синдромов по классам смежности. Правило определения кодового расстояния линейного блочного кода по кодовой таблице. Способ определения кратностей гарантированно обнаруживаемых, гарантированно исправляемых ошибок, а также гарантированно восстанавливаемых стертых символов. Границы Синглтона, Хемминга и неравенство Гилберта для корректирующих кодов. Фундаментальное свойство циклических кодов. Правило составления порождающих полиномов циклических кодов. Правило кодирования циклическим кодом в систематической и несистематической формах. Связь порождающих и проверочных полиномов циклического кода с порождающими и проверочными матрицами соответствующего линейного блочного кода. Способ деления и умножения полиномов с помощью цифровых фильтров, соответственно, рекурсивных и трансверсальных. Роль остатка от деления при декодировании циклических кодов. Способ формирования порождающих полиномов кодов Боуза-Чоудхури-Хоквингема (БЧХ). Связь между кодами БЧХ и кодами Рида-Соломона (РС). Способ кодирования кодом РС с помощью матрицы дискретного преобразования Фурье (ДПФ). Способ вычисления обратной матрицы ДПФ над полем Галуа. Особенности сверточных кодов. Алгоритм Витерби декодирования сверточных кодов. Особенности кодов с разреженными проверками на четность (LDPC). Способ мягкого итеративного декодирования кодов LDPC. --Экономные (сжимающие) коды: Определение энтропии источника. Способы вычисления энтропии источника. Связь между взаимной зависимостью символов и энтропией источника. Принципы векторного квантования сообщений. Способ построения кода Хаффмана. Способ

построения кода Шеннона-Фано. Способ построения кода Лемпеля-Зива. Способ расчета нижней границы для средней длины кода. Способ вычисления избыточности до и после кодирования. Способ вычисления пропускной способности каналов. -- Методы модуляции: Роль модуляции в системах передачи информации. Различие между аналоговой и цифровой модуляцией. Спектральный состав сигналов для основных методов модуляции: амплитудной, частотной и фазовой. Роль формирующих фильтров и влияние межсимвольной интерференции. Частотная манипуляция с непрерывной фазой. Взаимосвязь методов модуляции с классами выходных усилителей мощности. Принципы модуляции множества ортогональных поднесущих (OFDM). Роль ОFDM при наличии многолучевости. Влияние фазового шума на производительность систем связи. Отношение сигнал-шум для цифровых систем связи. Об энергетической и частотной эффективности систем связи.

- уметь Составлять кодовую таблицу линейного блочного кода по его матрице. Приводить матрицы линейных блочных кодов к систематической форме. Определять кодовое расстояние линейного блочного кода по его проверочной матрице, а также по кодовой таблице. Делить и умножать полиномы над полем Галуа GF(p) двумя способами: алгебраически и с помощью цифровых фильтров. Факторизовать полиномы с помощью программы компьютерной алгебры SymPy. Находить обратную матрицу дискретного преобразования Фурье над полем Галуа GF(p). Составлять диаграмму состояний и решетку сверточного кода. Составлять дерево кода Хаффмана. Составлять код Шеннона-Фано. Составлять таблицу кода Лемпеля-Зива. Вычислять энтропию заданного источника. Вычислять избыточность до и после кодирования сжимающим кодом. Вычислять пропускную способность двоичного симметричного канала связи и канала со стираниями. На качественном уровне изображать спектральные диаграммы сигналов с модуляциями: амплитудной (AM), фазовой (ФМ), частотной (ЧМ) и OFDM.
- **владеть** Методами компьютерного моделирования современных и перспективных систем связи. Элементами проектирования современных и перспективных систем связи.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5.0 зачетных единицы и представлена в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		2 семестр
Аудиторные занятия (всего)	60	60
Лекции	18	18
Практические занятия	18	18
Лабораторные работы	24	24
Самостоятельная работа (всего)	84	84
Выполнение индивидуальных заданий	8	8
Оформление отчетов по лабораторным работам	24	24
Проработка лекционного материала	9	9
Самостоятельное изучение тем (вопросов) теоретической части курса	27	27
Подготовка к практическим занятиям, семинарам	16	16
Всего (без экзамена)	144	144
Подготовка и сдача экзамена	36	36
Общая трудоемкость, ч	180	180
Зачетные Единицы	5.0	5.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Лек., ч	Прак. зан., ч	Лаб. раб., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции				
2 семестр										
1 Линейные блочные коды	3	2	0	7	12	ПК-8				
2 Циклические коды	2	2	8	11	23	ПК-8				
3 Коды Рида-Соломона	3	4	4	7	18	ПК-8				
4 Коды Боуза-Чоудхури-Хоквингема	0	0	0	8	8	ПК-11				
5 Сверточные коды.	0	0	4	5	9	ПК-8				
6 Низкоплотностные (LDPC) коды	2	0	0	9	11	ПК-11, ПК-8				
7 Экономные (сжимающие) коды.	2	4	0	5	11	ПК-8				
8 Коды Хаффмана и Шеннона-Фано.	0	0	0	4	4	ПК-8				
9 Коды Лемпеля-Зива и Лемпеля-Зива- Уэлча.	0	0	0	7	7	ПК-11				
10 Пропускная способность канала связи	2	2	0	3	7	ПК-8				
11 Модуляция. Спектральный состав.	2	4	4	9	19	ПК-8				
12 Частотная манипуляция с непрерывной фазой	0	0	4	4	8	ПК-8				
13 Принципы модуляции OFDM	0	0	0	4	4	ПК-8				
14 Частотная и энергетическая эффективность систем связи.	2	0	0	1	3	ПК-8				
Итого за семестр	18	18	24	84	144					
Итого	18	18	24	84	144					

5.2. Содержание разделов дисциплины (по лекциям)

Содержание разделов дисциплин (по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов дисциплин (по лекциям)

Названия разделов	Содержание разделов дисциплины (по лекциям)	Трудоемкость, ч	Формируемые компетенции
	2 семестр		
1 Линейные блочные коды	Порождающая матрица. Кодовая таблица. Кодовое расстояние. Кратность обнаружения, исправления и восстановления стертых символов. Определение	3	ПК-8

	<u>, </u>		
	кодового расстояния по кодовой таблице. Систематическая форма порождающей матрицы. Проверочная матрица. Синдром. Разложение векторного пространства на смежные классы. Определение кодового расстояния по проверочной матрице.		
	Итого	3	
2 Циклические коды	Фундаментальное свойство циклических кодов. Нуль-полином и его факторизация. Порождающий полином и его единственность для заданного кода. Связь порождающего полинома и порождающей матрицы. Проверочный полином, его связь с проверочной матрицей. Систематический циклический код. Систематический кодер на основе цифрового фильтра. Роль остатка от деления двух полиномов. Декодирование с исправлением ошибки. Декодирование с восстановлением стертых символов.	2	ПК-8
	Итого	2	
3 Коды Рида-Соломона	Элементы поля Галуа GF(p^q), где p - простое число (2, 3, 5, 7, 11) как q-мерные вектора из р-значных символов. Операции умножения и сложения. Порождающий полином кодов Рида-Соломона. Граница Синглтона. Проверочный полином кодов Рида-Соломона. Способ кодирования через дискретное преобразование Фурье (ДПФ). Способ обращения матрицы ДПФ. Декодирование кода Рида-Соломона с исправлением ошибок.	3	ПК-8
	Итого	3	
6 Низкоплотностные (LDPC) коды	Принцип построения проверочных матриц. Способ вычисления порождающей матрицы по проверочной. Принцип итеративного декодирования с мягкими решениями.	2	ПК-8
	Итого	2	
7 Экономные (сжимающие) коды.	Собственная информация. Энтропия источника. Избыточность. Взаимная информация. Принципы векторного квантования источника.	2	ПК-8
	Итого	2	
10 Пропускная способность канала связи	Скорость передачи информации. Пропускная способность. Пропускная способность двоичного симметричного канала связи. Пропускная способность канала со стираниями.	2	ПК-8
	Итого	2	
11 Модуляция. Спектральный состав.	Роль модуляции в системах передачи информации. Различие аналоговой и цифровой модуляции. Требования к спектрам сигналов в	2	ПК-8

	современных системах передачи информации. Тепловой шум. Спектральная плотность мощности сигнала. Спектры сигналов с АМ, ФМ, ЧМ и OFDM модуляциями.		
	Итого	2	
14 Частотная и энергетическая эффективность систем связи.	Связь между "аналоговым" и "цифровым" отношениями сигнал-шум. Нормированная пропускная способность канала. Скорость кодирования. Теорема Шеннона, ее иллюстрация. Предел Шеннона, предел двоичного канала связи: жесткие решения и мягкие решения.	2	ПК-8
	Итого	2	
Итого за семестр		18	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

Наименование	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин													
дисциплин	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Предшествующие дисциплины													
1 Теория телетрафика							+			+				
2 Теория электромагнитной совместимости радиоэлектронных средств и систем											+			
3 Формирование и обработка сигналов систем связи										+	+	+	+	+
4 Цифровая обработка сигналов систем связи											+	+	+	
	Последующие дисциплины													
1 Системы и сети передачи данных							+			+	+			
2 Теория построения инфокоммуникационных сетей и систем							+			+	+			+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

1И		Виды з			
Компетенции	Лек.	Прак. зан.	Лаб. раб.	Сам. раб.	Формы контроля
ПК-8	+	+	+	+	Домашнее задание, Отчет по индивидуальному заданию, Отчет по лабораторной работе, Тест
ПК-11				+	Конспект самоподготовки, Тест

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Наименование лабораторных работ приведено в таблице 7.1.

Таблица 7.1 – Наименование лабораторных работ

Названия разделов	Наименование лабораторных работ	Грудоемкость ,	Формируемые компетенции
		Трудс	Форм
	2 семестр		
2 Циклические коды	Изучение циклических кодов (7, 4). Систематическое кодирование и декодирование с исправлением однократных ошибок. Моделирование двоичного симметричного канала с независимыми ошибками. Оценка вероятности ошибки после декодирования.	4	ПК-8
	Изучение схемы систематического кодера циклического кода (15, 11) на основе рекурсивного цифрового фильтра. Изучение принципов деления двух полиномов с помощью таких фильтров.	4	
	Итого	8	
3 Коды Рида-Соломона	Исследование кода Рида-Соломона над полем $GF(p)$, где p - простое число. Изучается вариант кодирования $s(x) = a(x)*g(x)$, а также декодирование с исправлением ошибок по синдрому - остатку от деления.	4	ПК-8
	Итого	4	
5 Сверточные коды.	Изучение сверточных кодов со скоростью кодирования 1/2: кодирование, пороговое декодирование и декодирование по Витерби.	4	ПК-8
	Итого	4	
11 Модуляция.	Исследование спектров сигналов с линейной	4	ПК-8

Спектральный состав.	модуляцией. Изучение влияния на спектральную плотность формы импульса-носителя и корреляционной функции битовой последовательности.		
	Итого	4	
12 Частотная манипуляция с непрерывной фазой	Исследование Simulink-модели некогерентного демодулятора частотно манипулированного (ЧМн) сигнала с непрерывной фазой.	4	ПК-8
	Итого	4	
Итого за семестр		24	

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов	Наименование практических занятий (семинаров)	Трудоемкость, ч	Формируемые компетенции
	2 семестр		1
1 Линейные блочные коды	Составление кодовой таблицы. Определение кодового расстояния по кодовой таблице. Определение кратности гарантированного обнаружения, исправления и восстановления стертых символов. Приведение порождающей матрицы к систематической форме. Связь порождающей матрицы с проверочной. Синдром. Декодирование с исправлением однократных ошибок.	2	ПК-8
	Итого	2	
2 Циклические коды	Определение порождающей матрицы по порождающему полиному. Определение проверочного полинома по порождающему. Кодирование систематическим кодом. Проверка фундаментального свойства циклического кода. Нахождение частного и остатка от деления двух полиномов: алгебраически и с помощью цифрового фильтра. Корректор: декодирование с исправлением однократных ошибок.	2	ПК-8
	Итого	2	
3 Коды Рида-Соломона	Операции с элементами над полем Галуа GF(p^q). Определение порождающего полинома кода Рида-Соломона. Определение проверочного полинома кода Рида-Соломона. Приведение порождающих и проверочных матриц, записанных в циклической форме, к систематической форме. Кодирование кодом Рида-Соломона через матрицу дискретного преобразования Фурье	4	ПК-8

	(ДПФ).Вычисление обратной матрицы ДПФ.Декодирование кода Рида-Соломона с исправлением однократной и двукратной ошибки.		
	Итого	4	
7 Экономные (сжимающие) коды.	Определение собственной информации. Определение энтропии источника. Определение избыточности источника. Определение взаимной информации. Изучение принципов векторного квантования источника.		ПК-8
	Итого	4	
10 Пропускная способность канала связи	Вычисление пропускной способности различных каналов связи.	2 ПК-8	
	Итого	2	
11 Модуляция. Спектральный состав.	Расчет спектральной плотности импульсов треугольной формы на основе известной спектральной плотности импульсов прямоугольной формы. Расчет корреляционных функций для некоторых видов модуляции: с линейным преобразованием битов (сумма и разность), с чередованием полярности (АМІ, ЧПИ), с циклическим преобразованием (МLТ-3). Расчет спектральных плотностей по корреляционным функциям. Построение соответствующих графиков, их анализ.	4	ПК-8
	Итого	4	
Итого за семестр		18	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов	Виды самостоятельной работы	Трудоемкость,	формируемые компетенции <u>с</u>	Формы контроля	
		Tpy,	Фор		
	2 семест	p			
1 Линейные блочные коды	Подготовка к практическим занятиям, семинарам	2	ПК-8	Домашнее задание, Отчет по индивидуальному	
	Проработка лекционного материала	1		заданию, Тест	
	Выполнение индивидуальных заданий	4			
	Итого	7			
2 Циклические коды	Подготовка к	2	ПК-8	Домашнее задание,	

	практическим занятиям, семинарам			Отчет по лабораторной работе, Тест	
	Проработка лекционного материала	1			
	Оформление отчетов по лабораторным работам	8			
	Итого	11			
3 Коды Рида-Соломона	Подготовка к практическим занятиям, семинарам	2	ПК-8	Отчет по лабораторной работе, Тест	
	Проработка лекционного материала	1			
	Оформление отчетов по лабораторным работам	4			
	Итого	7			
4 Коды Боуза-Чоудхури- Хоквингема	Самостоятельное изучение тем (вопросов) теоретической части курса	8	ПК-11	Тест	
	Итого	8			
5 Сверточные коды.	Проработка лекционного материала	1	ПК-8	Отчет по лабораторной работе, Тест	
	Оформление отчетов по лабораторным работам	4			
	Итого	5			
6 Низкоплотностные (LDPC) коды	Самостоятельное изучение тем (вопросов) теоретической части курса	8	ПК-11, ПК-8	Конспект самоподготовки, Тест	
	Проработка лекционного материала	1			
	Итого	9			
7 Экономные (сжимающие) коды.	Подготовка к практическим занятиям, семинарам	4	ПК-8	Домашнее задание, Тест	
	Проработка лекционного материала	1			
	Итого	5			
8 Коды Хаффмана и Шеннона-Фано.	Выполнение индивидуальных заданий	4	ПК-8	Отчет по индивидуальному	
	Итого	4		заданию, Тест	
9 Коды Лемпеля-Зива и Лемпеля-Зива-Уэлча.	Самостоятельное изучение тем (вопросов) теоретической части курса	7	ПК-11	Конспект самоподготовки, Тест	

	Итого	7		
10 Пропускная способность канала связи	Подготовка к практическим занятиям, семинарам	2	ПК-8	Домашнее задание, Тест
	Проработка лекционного материала	1		
	Итого	3		
11 Модуляция. Спектральный состав.	Подготовка к практическим занятиям, семинарам	4	ПК-8	Домашнее задание, Отчет по лабораторной работе, Тест
	Проработка лекционного материала	1		
	Оформление отчетов по лабораторным работам	4		
	Итого	9		
12 Частотная манипуляция с непрерывной фазой	Оформление отчетов по лабораторным работам	4	ПК-8	Отчет по лабораторной работе, Тест
	Итого	4		
13 Принципы модуляции OFDM	Самостоятельное изучение тем (вопросов) теоретической части курса	4	ПК-8	Тест
	Итого	4		
14 Частотная и энергетическая	Проработка лекционного материала	1	ПК-8	Тест
эффективность систем связи.	Итого	1		
Итого за семестр		84		
	Подготовка и сдача экзамена	36		Экзамен
Итого		120		

10. Курсовой проект / курсовая работа

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр	
2 семестр					
Домашнее задание	4	4	4	12	
Конспект самоподготовки	4	4	4	12	

Отчет по индивидуальному заданию	8	8	8	24
Отчет по лабораторной работе	4	6	6	16
Тест	2	2	2	6
Итого максимум за период	22	24	24	70
Экзамен				30
Нарастающим итогом	22	46	70	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
	85 - 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 - 84	С (хорошо)
	70 - 74	D (удор догрорудану до)
3 (удовлетворительно)	65 - 69	D (удовлетворительно)
(зачтено)	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Галкин, Вячеслав Александрович. Цифровая мобильная радиосвязь [Текст]: учебное пособие для вузов / В. А. Галкин. 2-е изд., перераб. и доп. М.: Горячая линия Телеком, 2012. 592 с.: ил. (Учебное пособие. Специальность для высших учебных заведений). Библиогр.: с. 580-581. Предм. указ.: с. 582-585. ISBN 978-5-9912-0185-8: 774.40 р. (наличие в библиотеке ТУСУР 40 экз.)
- 2. Волков, Лев Николаевич. Системы цифровой радиосвязи. Базовые методы и характеристики: Учебное пособие для вузов / Л. Н. Волков, М. С. Немировский, Ю. С. Шинаков. М.: Экотрендз, 2005. 390[2] с.: ил., табл., портр. (Библиотека МТС & GSM). Библиогр.: с. 388-390. ISBN 5-88405-071-2: 269.01 р. (наличие в библиотеке ТУСУР 42 экз.)

12.2. Дополнительная литература

- 1. Методы повышения энергетической и спектральной эффективности цифровой радиосвязи: Учебное пособие / Варгаузин В.А., Цикин И.А. СПб:БХВ-Петербург, 2013. 352 с. ISBN 978-5-9775-0878-0 [Электронный ресурс] Режим доступа: http://znanium.com/catalog/product/943520 (дата обращения: 30.06.2018).
- 2. Скляр, Бернард. Цифровая связь: Теоретические основы и практическое применение : Пер. с англ. / Б. Скляр ; пер. Гроза Е. Г., пер. А. В. Назаренко, ред. А. В. Назаренко. 2-е изд., испр. М. : Вильямс, 2004. 1099[5] с. : ил, табл. Библиогр. в конце глав. Предм. указ.: с. 1093-1099. ISBN 5-8459-0497-8 : 481.80 р., 438.00 р., 279.20 р. (наличие в библиотеке ТУСУР 18 экз.).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Сборник компьютерных лабораторных работ по системам связи: Методические указания к лабораторным работам / Новиков А. В. 2018. 151 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7149 (дата обращения: 30.06.2018).
- 2. Демодуляция цифровых сигналов. Статистический и сигнальный подходы: Учебное пособие / Новиков А. В. 2018. 51 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7150 (дата обращения: 30.06.2018).
- 3. Исследование кодов Рида-Соломона: Методические указания к лабораторной работе по системам связи / Новиков А. В., Утегенов Д. Д. 2018. 10 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7361 (дата обращения: 30.06.2018).
- 4. Теория электрической связи: Учебное пособие / Акулиничев Ю. П., Бернгардт А. С. 2015. 196 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5858 (дата обращения: 30.06.2018).
- 5. Теория электрической связи: Учебно методическое пособие для проведения практических занятий и самостоятельной работы студентов / Акулиничев Ю. П. 2012. 202 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/1758 (дата обращения: 30.06.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 1. При изучении дисциплины рекомендуется использовать базы данных, информационносправочные и поисковые системы, к которым у ТУСУРа есть доступ https://lib.tusur.ru/re/resursy/bazy-dannyh
 - 13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для лекционных занятий Для проведения занятий лекционного типа, групповых и индивидуальных консультаций,

текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются демонстрационное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

13.1.2. Материально-техническое и программное обеспечение для практических занятий

Учебная лаборатория информационных технологий

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ)

634034, Томская область, г. Томск, Вершинина улица, д. 47, 423 ауд.

Описание имеющегося оборудования:

- Доска магнитно-маркерная BRAUBERG;
- LMC-100103 Экран с электроприводом Master Control Matte 203*203 см White FiberGlass, черная кайма по периметру;
 - Проектор NEC «М361Х»;
 - Системный блок (16 шт.);
 - Мониторы (16 шт.);
 - Компьютер;
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- Google Chrome
- Microsoft Windows 7 Pro
- OpenOffice
- PTC Mathcad13, 14

13.1.3. Материально-техническое и программное обеспечение для лабораторных работ

Лаборатория защищенных систем связи

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа

634034, Томская область, г. Томск, Вершинина улица, д. 47, 432 ауд.

Описание имеющегося оборудования:

- Приборы измерительные (17 шт.);
- Макеты лабораторные: "Исследование спектров импульсных модулированных сигналов", "Исследование преобразования непрерывных величин в цифровой двоичный код", "Исследование многоканальной системы передачи информации с временным разделением каналов", "Исследование системы связи с дельта-модуляцией", "Исследование биортогонального кода", "Исследование сверточного кода", "Код с проверкой на четность и циклический код";
 - Компьютер WS3;
 - Компьютер Celeron (4 шт.);
 - Телевизор плазменный Pioneer с диагональю экрана 51;
 - Комплект специализированной учебной мебели;
 - Рабочее место преподавателя.

Программное обеспечение:

- Google Chrome
- Microsoft Windows 7 Pro
- OpenOffice
- PTC Mathcad13, 14

13.1.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

Помехоустойчивое кодирование основано на:

- Дублировании символов
- Введении избыточности по определенным правилам
- Скремблировании сообщений псевдослучайными кодами
- Введении избыточности по случайным правилам

Кодирование источника основано на:

- Скремблировании сообщений псевдослучайными кодами
- Методах шифрования
- Существовании избыточности, мера которой может быть выражена шенноновской энтропией
 - Неравновероятности символов сообщения

Линейные блочные коды примечательны тем, что полностью определяются:

- Набором порождающих полиномов
- Порождающим полиномом
- Порождающей матрицей
- Кодовой таблицей

Энтропия некоторого источника информации определяется как:

- Среднее значение собственной информации
- Максимальное значение собственной информации
- Минимальное значение собственной информации
- Медианное значение собственной информации

Межсимвольная интерференция является:

- Вредной
- Полезной
- Зависит от способа формирования сигнала
- Нейтральной

Мощность теплового шума на входе малошумящего усилителя приемника прямо пропорциональна:

- Коэффициенту шума малошумящего усилителя
- Полосе частот принимаемого радиосигнала
- Несущей частоте принимаемого радиосигнала
- Существует сама по себе и ни от чего не зависит

Помехоустойчивые коды бывают:

- Блочными и потоковыми
- Регулярными и нерегулярными
- Однородными и неоднородными
- Статическими и динамическими

Информация по К. Шеннону выражается как:

- Логарифм обратной вероятности
- Величина обратной вероятности
- Логарифм вероятности
- Логарифм модуля вероятности

Сверточные коды примечательны тем, что полностью определяются:

- Набором порождающих полиномов
- Кодовой таблицей
- Порождающей матрицей
- Порождающим полиномом

Строки порождающей матрицы линейного блочного кода должны быть:

- Ненулевыми
- Разными
- Линейно-независимыми
- Линейно-зависимыми

Число строк проверочной матрицы линейного блочного кода определяется:

- Количеством проверочных символов
- Количеством информационных символов
- Зависит от дополнительных условий
- Кодовым расстоянием кода

Коды Хаффмана примечательны тем, что они дают результат, который:

- Другие коды не превзойдут
- С помощью других кодов не достижим
- Приводит к нулевой избыточности
- Другие коды не превзойдут в далеком будущем

Свойство префикса некоторого кода (например, кодов Хаффмана или Шеннона-Фано) заключается в том, что:

- Ни одна приставка некоторого кодового слова не является кодовым словом

- Все приставки являются кодовыми словами
- Кодовые слова имеют одинаковую длину
- Кодовые слова имеют разную длину

Код Лемпеля-Зива (Lempel-Ziv) является:

- Словарным кодом
- Древовидным кодом подобно коду Хаффмана
- Кодом с хеш-таблицей (hash table)
- Кодом с линейным предсказанием

Кодовое расстояние кодов Хемминга равно:

- 3
- 4
- 5
- Зависит от конкретных размеров кода

Коды Рида-Соломона примечательны тем, что они:

- Дают максимально возможное кодовое расстояние и являются недвоичными
- Являются недвоичными
- Имеют порождающий полином, который не раскладывается на множители
- Имеют кодовое расстояние, равное количеству проверочных символов

Столбцы проверочной матрицы линейного блочного кода фактически являются:

- Запрещенными кодовыми словами
- Разрешенными кодовыми словами
- Синдромами для однократных ошибок
- Векторами однократных ошибок

Кодовое расстояние линейного блочного кода можно определить по проверочной матрице кода как:

- Количество ненулевых столбцов
- Максимальное количество линейно-независимых столбцов матрицы минус единица
- Максимальное количество линейно-независимых столбцов матрицы
- Максимальное количество линейно-независимых столбцов матрицы плюс единица

Величина взаимной информации по К. Шеннону определяется как логарифм отношения вероятностей:

- P(x/y) / P(x)
- P(x) / P(x/y)
- P(x/y) / P(x,y)
- P(x,y) / P(x)

Согласованный фильтр обеспечивает:

- Минимально короткий по времени отклик на своем выходе
- Максимальное отношение сигнал-шум на своем выходе в определенный момент времени, при условии, что шум белый
 - Снятие закона модуляции (демодуляцию)
 - Максимум шенноновской информации на своем выходе

Межсимвольная интерференция — это:

- Когда время прихода импульса является случайной величиной с ненулевой дисперсией
- Когда импульс влияет на соседние импульсы, накладываясь на них своими "хвостами"
- Когда длительность импульса является случайной величиной с ненулевой дисперсией
- Процесс формирования группового сигнала в системах с кодовым разделением каналов Коррелятор это устройство, которое:
- Вычисляет интеграл по времени от входного сигнала
- Вычисляет произведение опорного сигнала и входного
- Вычисляет интеграл по времени от произведения опорного сигнала и входного
- Вычисляет свертку опорного сигнала с входным

Петля Костаса предназначена для:

- Автоматической подстройки частоты формируемого опорного колебания
- Снятия дифференциального кодирования символов

- Автоматической подстройки частоты формируемого опорного колебания с точностью до фазы
 - Удвоения частоты формируемого колебания

Модуляция GMSK позволяет передать:

- 1.5 бита на символ
- 4 бита на символ
- 1 бит на символ
- 2 бита на символ

Более требовательна к отношению сигнал-шум модуляция:

- GMSK
- OPSK
- QAM-16
- BPSK

Коэффициент шума малошумящего усилителя это:

- Отношение сигнал-шум на входе усилителя, деленное на отношение сигнал-шум на его выходе
 - Уровень собственного шума усилителя, в dВm
 - Величина kT, где T температура окружающей среды, k постоянная Больцмана
- Разница коэффициентов усиления усилителя (в dB), измеренных для двух опорных температур

14.1.2. Экзаменационные вопросы

линейные блочные коды:

Порождающая матрица. Кодовая таблица. Кодовое расстояние. Кратность обнаружения, исправления и восстановления стертых символов. Определение кодового расстояния по кодовой таблице. Систематическая форма порождающей матрицы. Проверочная матрица. Синдром. Определение кодового расстояния по проверочной матрице.

ЦИКЛИЧЕСКИЕ КОДЫ:

Фундаментальное свойство циклических кодов. Нуль-полином и его факторизация. Порождающий полином и его единственность для заданного кода. Связь порождающего полинома и порождающей матрицы. Проверочный полином, его связь с проверочной матрицей. Систематический циклический код. Систематический кодер на основе цифрового фильтра. Роль остатка от деления двух полиномов. Декодирование с исправлением ошибки. Декодирование с восстановлением стертых символов.

LDPC КОДЫ:

Принцип построения проверочных матриц. Способ вычисления порождающей матрицы по проверочной. Принцип итеративного декодирования с мягкими решениями.

ЭКОНОМНЫЕ КОДЫ:

Собственная информация. Энтропия источника. Избыточность. Взаимная информация. Принципы векторного квантования источника.

Коды Хаффмана, Шеннона-Фано и Лемпеля-Зива.

МОДУЛЯЦИЯ, СПЕКТРАЛЬНЫЙ СОСТАВ:

Роль модуляции в системах передачи информации. Различие аналоговой и цифровой модуляции. Требования к спектрам сигналов в современных системах передачи информации. Тепловой шум. Спектральная плотность мощности сигнала. Спектры сигналов с АМ, ФМ, ЧМ и OFDM модуляциями.

ЧАСТОТНАЯ И ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ СИСТЕМ СВЯЗИ:

Связь между "аналоговым" и "цифровым" отношениями сигнал-шум. Нормированная пропускная способность канала. Скорость кодирования. Теорема Шеннона, ее иллюстрация. Предел Шеннона, предел двоичного канала связи: жесткие решения и мягкие решения.

КОДЫ РИДА-СОЛОМОНА:

Элементы поля Галуа $GF(p^q)$, где p - простое число (2, 3, 5, 7, 11...) как q-мерные вектора из p-значных символов. Операции умножения и сложения. Порождающий полином кодов Рида-Соломона. Граница Синглтона. Проверочный полином кодов Рида-Соломона. Способ кодирования через дискретное преобразование Фурье (ДПФ). Способ обращения матрицы ДПФ.

Декодирование кода Рида-Соломона с исправлением ошибок.

14.1.3. Темы индивидуальных заданий

КОДИРОВАНИЕ ИСТОЧНИКА:

Статистические свойства троичного источника без памяти определяются рядом распределения, заданным в задаче 1 задания.

- 1) Определить энтропию источника и его избыточность.
- 2) Произвести кодирование источника двоичными кодами Хаффмана, Шеннона-Фано и равномерным кодом.
- 3) Произвести блоковое кодирование источника блоками по два символа двоичными кодами Хаффмана, Шеннона-Фано и равномерным кодом.
 - 4) Сравнить коды по избыточности.

14.1.4. Темы домашних заданий

Задана порождающая матрица некоторого линейного блочного кода. Определить, составляя кодовую таблицу, параметры (n, k, d) кода, а также избыточность.

Задана порождающая матрица линейного блочного кода. Привести ее к систематической форме и найти проверочную матрицу.

Дан порождающий полином циклического кода. Записать порождающую и проверочную матрицы соответствующего линейного блочного кода.

Троичный источник задан вероятностями символов. Построить код Хаффмана для однобуквенных сочетаний, а также для двухбуквенных сочетаний символов.

Код Голда задан двумя полиномами. Записать два произвольных кодовых слова кода Голда. Задана функция корреляции битовой последовательности. Определить спектральную плотность мощности и построить ее график на одном периоде.

14.1.5. Вопросы на самоподготовку

Чем коды Рида-Соломона отличаются от кодов Боуза-Чоудхури-Хоквингема?

В чем особенность кодов с низкой плотностью проверок на четность (LDPC)? Почему при их использовании отпадает надобность в интерливинге?

В чем особенность кода Лемеля-Зива-Уэлча (LZW) по сравнению с кодом Лемпеля-Зива (LZ77, LZ78)?

Почему техника OFDM не была реализована сразу после ее теоретического обоснования? Какой "трюк" позволил сделать это в настоящее время?

14.1.6. Темы лабораторных работ

Изучение циклических кодов (7, 4). Систематическое кодирование и декодирование с исправлением однократных ошибок. Моделирование двоичного симметричного канала с независимыми ошибками. Оценка вероятности ошибки после декодирования.

Изучение схемы систематического кодера циклического кода (15, 11) на основе рекурсивного цифрового фильтра. Изучение принципов деления двух полиномов с помощью таких фильтров.

Изучение сверточных кодов со скоростью кодирования 1/2: кодирование, пороговое декодирование и декодирование по Витерби.

Исследование Simulink-модели некогерентного демодулятора частотно манипулированного (ЧМн) сигнала с непрерывной фазой.

Исследование спектров сигналов с линейной модуляцией. Изучение влияния на спектральную плотность формы импульса-носителя и корреляционной функции битовой последовательности.

Исследование кода Рида-Соломона над полем GF(p), где p - простое число. Изучается вариант кодирования s(x) = a(x)*g(x), а также декодирование с исправлением ошибок по синдрому - остатку от деления.

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 – Дополнительные материалы оценивания для лиц с ограниченными возможностями

здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.