МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ Директор департамента образования

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович Действителен: с 19.01.2016 по 16.09.2019

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Распределённые вычислительные системы (ГПО-3)

Уровень образования: высшее образование - бакалавриат

Направление подготовки / специальность: 09.03.01 Информатика и вычислительная техника

Направленность (профиль) / специализация: Программное обеспечение средств

вычислительной техники и автоматизированных систем

Форма обучения: очная

Факультет: ФСУ, Факультет систем управления

Кафедра: АСУ, Кафедра автоматизированных систем управления

Курс: **3** Семестр: **6**

Учебный план набора 2015 года

Распределение рабочего времени

No	Виды учебной деятельности	6 семестр	Всего	Единицы
1	Практические занятия	108	108	часов
2	Всего аудиторных занятий	108	108	часов
3	Самостоятельная работа	108	108	часов
4	Всего (без экзамена)	216	216	часов
5	Общая трудоемкость	216	216	часов
		6.0	6.0	3.E.

Дифференцированный зачет: 6 семестр

Томск 2018

Рассмотрена	и одс	брена н	а з	аседании	кафедры
протокол №	6	от «_1	17>	>7	2018 г.

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа дисциплины составлена ственного образовательного стандарта высшего образовки (специальности) 09.03.01 Информатика 12.01.2016 года, рассмотрена и одобрена на заседа года, протокол №	с учетом требований федерального государ разования (ФГОС ВО) по направлению подго и вычислительная техника, утвержденного
Разработчик:	
д.т.н., профессор каф. АСУ каф. АСУ	М. Ю. Катаев
Заведующий обеспечивающей каф. ACУ	А. М. Кориков
Рабочая программа дисциплины согласована	с факультетом и выпускающей кафедрой:
Декан ФСУ	П. В. Сенченко
Заведующий выпускающей каф. ACУ	А. М. Кориков
Эксперты:	
Заведующий кафедрой автоматизированных систем управления (АСУ)	А. М. Кориков
Доцент кафедры автоматизированных систем управления (АСУ)	А. И. Исакова

1. Цели и задачи дисциплины

1.1. Цели дисциплины

является изучение общих сведений о многопроцессорных вычислительных системах, включая их назначение, область применения, оценку производительности, описание компонент и основных архитектур. Особое внимание уделено рассмотрению кластерных вычислительных систем.

1.2. Задачи дисциплины

- формирование умений и навыков по следующим направлениям деятельности:
- знание общих принципов вычислительных систем;
- знание математических основ, способов организации и особенностей проектирования процессоров баз данных, потоковых процессоров, нейронных процессоров и процессоров с многозначной (нечеткой) логикой;
 - знание архитектур многопроцессорных вычислительных систем;
- умение применять решения, с помощью которых достигается устойчивая работа систем;
 - владение математическими основами организации вычислительных систем.

_

2. Место дисциплины в структуре ОПОП

Дисциплина «Распределённые вычислительные системы (ГПО-3)» (Б1.В.ДВ.7.2) относится к блоку 1 (вариативная часть).

Предшествующими дисциплинами, формирующими начальные знания, являются: Вычислительная математика, Дискретная математика, Инженерная и компьютерная графика, Информатика, Объектно-ориентированное программирование.

Последующими дисциплинами являются: GRID-технологии, Методы оптимизации.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-4 Способность участвовать в настройке и наладке программно-аппаратных комплексов.;
- ПК-3 Способность обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности.;

В результате изучения дисциплины обучающийся должен:

- знать общие принцы построения распределенных вычислительных систем; математических основы, способы организации и особенности проектирования процессоров баз данных, потоковых процессоров, нейронных процессоров и процессоров с многозначной (нечеткой) логикой; архитектуры многопроцессорных вычислительных систем; методы и способы повышения эффективности и надежности процессов обработки и передачи данных и знаний в вычислительных машинах, комплексах и компьютерных сетях.
- **уметь** применять решения, с помощью которых достигается устойчивая работа вычислительных систем; анализировать архитектуру вычислительных систем; применять основные методы проектирования сложных вычислительных систем с использованием объектно-ориентированного подхода; пользоваться языками и инструментальными средствами распределенного и параллельного программирования; организовать глобально распределенную обработку данных.
- владеть математическими основами организации вычислительных систем; навыками применения современных базовых алгоритмов; навыками работы в комплексных средах создания программного обеспечения; навыками проектирования распределенных вычислительных систем с использованием объектно-ориентированного подхода; навыками программирования в области распределенных и параллельных технологий; навыками программирования на языках высокого уровня, а также работы в математических пакетах Matlab, MathCAD, Scilab.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6.0 зачетных единицы и представлена в таблине 4.1.

Таблица 4.1 – Трудоемкость дисциплины

Виды учебной деятельности	Всего часов	Семестры
		6 семестр
Аудиторные занятия (всего)	108	108
Практические занятия	108	108
Самостоятельная работа (всего)	108	108
Выполнение индивидуальных заданий	54	54
Подготовка к практическим занятиям, семинарам	54	54
Всего (без экзамена)	216	216
Общая трудоемкость, ч	216	216
Зачетные Единицы	6.0	6.0

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

Разделы дисциплины и виды занятий приведены в таблице 5.1.

Таблица 5.1 – Разделы дисциплины и виды занятий

Названия разделов дисциплины	Прак. зан., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
6 cen	иестр	<u> </u>		
1 Определение целей и задач этапа проекта. Разработка (актуализация) технического задания этапа проекта. Постановка индивидуальных задач в рамках выполнения этапа проекта.	54	54	108	ОПК-4, ПК-3
2 Выполнение индивидуальных задач в рамках этапа проекта. Составление отчета. Защита отчета о выполнении этапа проекта/ Защита отчета о выполнении проекта (ГПО-3)	54	54	108	ОПК-4, ПК-3
Итого за семестр	108	108	216	
Итого	108	108	216	

5.2. Содержание разделов дисциплины (по лекциям)

Не предусмотрено РУП.

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами представлены в таблице 5.3.

Таблица 5.3 – Разделы дисциплины и междисциплинарные связи

таолица 5.5— газделы дисциплины и междисциплинарные сылы					
Наименование дисциплин		дисциплины необходим обеспечи	№ разделов данной дисциплины, для которых необходимо изучение обеспечивающих и обеспечиваемых дисциплин		
		1	2		
Предшествующие дисциплины					

1 Вычислительная математика	+	+
2 Дискретная математика	+	+
3 Инженерная и компьютерная графика	+	+
4 Информатика	+	+
5 Объектно-ориентированное программирование	+	+
Последующие дисциплины		
1 GRID-технологии	+	+
2 Методы оптимизации	+	+

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.4.

Таблица 5.4 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

ИИ	Виды з	анятий			
Компетенции	Прак. зан.	Сам. раб.	Формы контроля		
ОПК-4	+	+	Отчет по индивидуальному заданию, Тест, Отчет по практическому занятию		
ПК-3	+	+	Отчет по индивидуальному заданию, Тест, Отчет по практическому занятию		

6. Интерактивные методы и формы организации обучения

Не предусмотрено РУП.

7. Лабораторные работы

Не предусмотрено РУП.

8. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 8.1.

Таблица 8.1 – Наименование практических занятий (семинаров)

Названия разделов Наименование практических занятий (семинаров)		Трудоемкость,	Формируемые компетенции
	6 семестр		
1 Определение целей и задач этапа проекта. Разработка (актуализация) технического задания этапа проекта. Постановка индивидуальных задач в рамках выполнения этапа проекта.	Постановка Цели и задач проекта на основе изучения литературы в области исследований. Классификация вычислительных систем (ВС с пакетным режимом обработки данных, ВС коллективного пользования, ВС реального времени. ВС, использующие параллелизм данных. Принцип скалярной и векторной обработки, ВС на основе векторных и матричных процессоров, ВС на основе ассоциативных процессоров). Архитектуры компьютеров на схемах малой интеграции (однопроцессорные, векторно-конвейерные, параллельные системы	54	ОПК-4, ПК-3

	класса SIMD); Архитектуры массово параллельных компьютеров на БИС, СБИС и гипербольших ИС (системы с распределенной разделяемой памятью и однокристальные системы, реконфигурируемые процессоры); Традиционные многопроцессорные модели распараллеливания (статическое и динамическое распараллеливание, архитектура суперскалярных процессоров и организация динамического распараллеливания, работа с памятью); Мультитредовые модели распараллеливания (мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления и потоков данных программ; модель выполнения мультитредовых программ и ее специфика; аппаратные средства для мультитредовой архитектуры). Шинные, матричные и кубические структуры (гиперкуб, омега, баттерфляй, flip); Коммуникационные среды масштабируемых ВС, шины интерфейса ввода-вывода микропроцессора, особенности применения каналов ввода-вывода. Высокопроизводительные универсальные КС на основе масштабируемого когерентного интерфейса SCI (основные характеристики, логическая структура и архитектура, когерентность кэш-памятей); КС МҮRINET (основные характеристики, адаптер «шина компьютера — линк сети», коммутаторы логический уровень протокола сети Мугіпеt, физическая реализация и ПО); КС транспьютеров (технология, передача данных системах фирмы Inmos, КС на базе микропроцессора TMS 320 C4х и КС на базе ADSP 2106X).		
	Итого	54	
2 Выполнение индивидуальных задач в рамках этапа проекта. Составление отчета. Защита отчета о выполнении этапа проекта/ Защита отчета о выполнении проекта (ГПО-3)	По итогам работы по проекту, подготовка отчета и презентации. Различные модели отказоустойчивых систем (горячий резерв, репликация, параллельный сервер базы данных, МРР система). Информационные системы высокой готовности. Отказоустойчивые системы на базе стандартных компонентов. Способы оценки производительности ВС (пиковая и реальная производительность, способы измерения реальной производительности). Тест Linpack. Пакеты тестовых программ SPEC и ТРС. Тесты коммуникационной среды. универсальные ВС с фиксированной и программируемой структурой, специализированные ВС с программируемой структурой (однородные ВС, программируемые гаw-микропроцессоры, ассоциативный процессор). Нейросетевые ВС. Многопроцессорные серверы (кластеры DIGITAL TruCluster). Суперкомпьютеры Сгау ТЗЕ-900, Сгау ТЗЕ-1200. ВС из компонентов высокой готовности (Beowulf, Avalon). Проект суперкомпьютера Blue Gene фирмы IBM. Архитектура и организация параллельных вычислений в	54	ОПК-4, ПК-3

	МВС-100, организация передачи сообщений, реализация и инициация процесса ROUTER. Архитектура МВС-1000/200 и его ПО, организация безопасного удаленного доступа и система планирования запуска заданий; Архитектура и ПО суперкомпьютера МВС-1000М. Развитие системного ПО параллельных суперкомпьютеров и сетевые вычисления на базе технологий GRID.		
	Итого	54	
Итого за семестр		108	

9. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 9.1.

Таблица 9.1 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

<u> Гаолица 9.1 – Виды самос</u>	тоятельной работы, трудоем	икость и	формируе	мые компетенции
Названия разделов	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	6 семест	p		
1 Определение целей и задач этапа проекта. Разработка	Подготовка к практиче- ским занятиям, семина- рам	27	ОПК-4, ПК-3	Отчет по индивидуальному заданию, Отчет по практическому занятию,
(актуализация) технического задания	Выполнение индивидуальных заданий	27		Тест
этапа проекта. Постановка индивидуальных задач в рамках выполнения этапа проекта.	Итого	54		
2 Выполнение индивидуальных задач в рамках этапа проекта.	Подготовка к практиче- ским занятиям, семина- рам	27	ОПК-4, ПК-3	Отчет по индивидуальному заданию, Тест
Составление отчета. Защита отчета о выполнении этапа проекта/ Защита отчета о выполнении проекта (ГПО-3)	Выполнение индивидуальных заданий	27		
	Итого	54		
Итого за семестр		108		
Итого		108		

10. Курсовая работа (проект)

Не предусмотрено РУП.

11. Рейтинговая система для оценки успеваемости обучающихся

11.1. Балльные оценки для элементов контроля

Таблица 11.1 – Балльные оценки для элементов контроля

Элементы учебной	Максимальный	Максимальный	Максимальный	Всего за
деятельности	балл на 1-ую КТ с	балл за период	балл за период	семестр

	начала семестра	между 1КТ и 2КТ	между 2КТ и на конец семестра	
6 семестр				
Отчет по индивидуальному заданию	10	10	10	30
Отчет по практическому занятию	10	20	10	40
Тест	10	10	10	30
Итого максимум за период	30	40	30	100
Нарастающим итогом	30	70	100	100

11.2. Пересчет баллов в оценки за контрольные точки

Пересчет баллов в оценки за контрольные точки представлен в таблице 11.2.

Таблица 11.2 – Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
\geq 90% от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 60% до 69% от максимальной суммы баллов на дату КТ	3
< 60% от максимальной суммы баллов на дату КТ	2

11.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 11.3.

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (хорошо) (зачтено)	85 - 89	В (очень хорошо)
	75 - 84	С (хорошо)
	70 - 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 - 69	
	60 - 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

12. Учебно-методическое и информационное обеспечение дисциплины

12.1. Основная литература

- 1. Панов, С. А. Вычислительные машины, системы и сети: Курс лекций [Электронный ресурс] / С. А. Панов. Томск: ТУСУР, 2015. 81 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5002 (дата обращения: 23.06.2018).
- 2. Гриценко, Ю.Б. Операционные системы: учебное пособие: в 2 ч. / Ю. Б. Гриценко; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра автоматизации обработки информации. Томск: ТМЦДО, 2009. Ч. 2. Томск: ТМЦДО, 2009. 230 с. (наличие в библиотеке ТУСУР 19 экз.)

12.2. Дополнительная литература

- 1. Бойченко, И.В. Сети ЭВМ и телекоммуникации: учебное пособие / И. В. Бойченко; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра автоматизированных систем управления. Томск: ТУСУР, 2007. 240 с.: ил., табл. Библиогр.: с. 240. (наличие в библиотеке ТУСУР 47 экз.)
- 2. Панов, С. А. Вычислительные машины, системы и сети: Курс лекций [Электронный ресурс] / С. А. Панов. Томск: ТУСУР, 2015. 81 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5002 (дата обращения: 23.06.2018).

12.3. Учебно-методические пособия

12.3.1. Обязательные учебно-методические пособия

- 1. Боровской, И. Г. Проблемно-ориентированные вычислительные системы: Методические указания по выполнению практических работ и заданий самостоятельной подготовки [Электронный ресурс] / И. Г. Боровской Томск: ТУСУР, 2018. 62 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7397 (дата обращения: 23.06.2018).
- 2. Кручинин, В. В. Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей: Методические указания к практическим занятиям и организации самостоятельной работы аспирантов [Электронный ресурс] / В. В. Кручинин, Ю. В. Морозова. Томск: ТУСУР, 2018. 72 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/7484 (дата обращения: 23.06.2018).
- 3. Шарыгин, Г. С. Групповое проектное обучение: Сборник нормативно-методических материалов по составлению технических заданий, программ и отчетности по ГПО [Электронный ресурс] / Шарыгин Г. С. Томск: ТУСУР, 2012. 116 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/2315 (дата обращения: 23.06.2018).

12.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Профессиональные базы данных и информационные справочные системы

- 1. Крупнейший российский информационный портал в области науки, технологии, медицины и образования. www.elibrary.ru Доступ свободный
 - 13. Материально-техническое обеспечение дисциплины и требуемое программное обеспечение

13.1. Общие требования к материально-техническому и программному обеспечению дисциплины

13.1.1. Материально-техническое и программное обеспечение для практических занятий Учебная вычислительная лаборатория / Компьютерный класс

учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций, помещение для проведения текущего контроля и промежуточной аттестации, помещение для самостоятельной работы

634034, Томская область, г. Томск, Вершинина улица, д. 74, 435 ауд. Описание имеющегося оборудования:

- Рабочая станция Aquarius Pro P30S79 Intel Core i7/4 Гб;
- RAM/500Гб HDD/LAN (10 шт.);
- Проектор ACER X125H DLP;
- Кондиционер;
- Видеокамера (2 шт.);
- Точка доступа WiFi;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip
- Adobe Acrobat Reader
- Code::Blocks
- Far Manager
- Java
- Java SE Development Kit
- Maxima
- Microsoft PowerPoint Viewer
- Microsoft Visual Studio 2013 Professional
- Microsoft Windows 7 Pro
- Microsoft Word Viewer
- NetBeans IDE
- Notepad++
- PTC Mathcad13, 14
- Scilab

13.1.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 201 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Состав оборудования:

- учебная мебель;
- компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. 5 шт.;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду университета.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip;
- Google Chrome.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

14. Оценочные материалы и методические рекомендации по организации изучения дисциплины

14.1. Содержание оценочных материалов и методические рекомендации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы в составе:

14.1.1. Тестовые задания

- 1. Комплексирование средств BT позволяет повысить эффективность систем обработки информации за счет чего?
 - а. повышения надежности
 - б. снижения затрат
 - в. производительности ЭВМ
- г. комплексного использования единых мощных вычислительных и информационных ресурсов
 - 2. Все интерфейсы, используемые с ВТ и сетях, разделяются на сколько типов?
 - a. 3
 - б. 2
 - в. 4
 - г. 5 д. 6
- 3. Параллельный интерфейс состоит из числа больших линий, по которым передача данных осуществляется в параллельном коде в виде
 - а. 8-24 разрядных слов
 - б. 8-64 разрядных слов
 - в. 8-128 разрядных слов
 - г. 24-128 разрядных слов
 - д. 8-16 разрядных слов
 - 4. Метод коммутаций сообщений обеспечивает
 - а. Независимость работы отдельных участков связи
 - б. Сглаживание несогласованности
 - в. Эффективно реализуется передача многоадресных сообщений
 - г. Передача информаций производится в любое время
 - д. Все, указанные вместе
 - 5. Сколько существует групп методов доступа к сети?
 - a. 5
 - б. 3
 - в. 2
 - г. 4
 - д. 6
 - 6. Эффективность применения компьютерной сети определяется чем?
 - а. Позволяет автоматизировать управление объектами

- б. Концентрацией больших объемов данных
- в. Все, вместе взятые
- г. Обеспечением надежного и быстрого доступа пользователей к вычислительным и информационным ресурсам
 - д. Концентрацией программных и аппаратных средств
- 7. Оптоволоконная оптика позволяет повысить пропускную способность , например система F6 M обеспечивает передачу информации, до 6,3 Мбит/с, заменяя до
 - а. 96 телефонных каналов
 - б. 45 телефонных каналов
 - в. 64 телефонных каналов
 - г. 128 телефонных каналов
 - д. 140 телефонных каналов
 - 8. Создание высокоэффективных крупных систем связано с
 - а. Объединением ЭВМ с помощью средств связи
 - б. Обслуживанием отдельных предприятий
 - в. Обслуживанием подразделения предприятий
 - г. Все вместе взятые
 - д. Объединением средств вычислительной техники
- 9. Передача информации между удаленными компонентами осуществляется с помощью чего?
 - а. Телеграфных каналов
 - б. Коаксиальных кабелей связи
 - в. Беспроводной связи
 - г. Телефонных каналов
 - д. Все, вместе взятые
 - 10. Что представляет из себя сеть Петри?
 - а. Не ориентированный граф
 - б. Ориентированный граф N={T}
 - в. Ориентированный граф N={T,P,F,R}
 - г. Ориентированный граф N={F,R}
 - д. Ориентированный граф N={F,T}
 - 11. сколько видов компонентов имеет ПО вычисленных сетей?
 - a. 2
 - б. 4
 - в. 5
 - г. 3
 - д. 6
- 12. Международная организация по стандартизации ISO подготовила проект эталонной модели взаимодействия открытых информационных сетей. Она была принята в качестве международного стандарта и имеет несколько уровней, сколько их?
 - а. 6 уровней
 - б. 5 уровней
 - в. 3 уровня
 - г. 4 уровня
 - д. 7 уровней
- 13. Фиксированный набор информации, называемый пакетом, независимо от типа ЛВС включает в себя
 - а. адрес получателя
 - б. адрес отправителя
 - в. контрольная сумма
 - г. данные
 - д. все перечисленное
 - 14. Все множество видов ЛВС, разделяется
 - а. на 4 группы

- б. на 3 группы
- в. на 2 группы
- г. на 5 групп
- д. на 6 групп
- 15. Для современных вычислительных сетей что характерно?
- а. Объединение многих ЭВМ и сети вычислительных систем
- б. Все, вместе взятые
- в. Объединение широкого спектра периферийного оборудования
- г. Применение средств связи
- д. Наличие операционной системы
- 16. Совокупность ЭВМ, программного обеспечения, периферийного оборудования, средств связи с коммуникационной подсетью вычислительной сети, выполняющих прикладные процессы это
 - а. абонентская система
 - б. коммуникационная подсеть
 - в. прикладной процесс
 - г. телекоммуникационная система
 - д. смешанная система
 - 17. Метод доступа Token Ring рассчитан на какую топологию
 - а. На «общую шину»
 - б. На многосвязную
 - в. Иерархическую
 - г. На кольцевую
 - д. На звездообразную
 - 18. Базовая коммуникационная сеть?
 - а. Совокупность коммуникационных систем
 - б. Магистраль каналов связи
 - в. Совокупность ЭВМ
 - г. Совокупность шин
- д. Совокупность коммуникационных систем и магистральных каналов связи обеспечивающих предоставление пользователем сквозных транспортных соединений для обмена информации
 - 19. В модели «Клиент-Сервер» созданной на основе ПЭВМ предлагается, следуя из её ...
- а. Система реализуется в виде открытой архитектуры, объединяющей ЭВМ различных классов
- б. Пользователь системы освобождён от необходимости знать, где находится требуемая ему информация
 - в. Сеть содержит значительное количество серверов и клиентов
 - г. Основу вычислительной системы составляет рабочие станции
 - д. Все перечисленное
 - 20. Модель файл-сервер обеспечивает доступ ...
 - а. К файлам базы данных
 - б. К стандартным программам
 - в. К внешним устройствам
 - г. К удалённым техническим средствам
 - 21. Побитная инверсия машинного слова...
 - a. NOT
 - б. INV
 - в. СОМ
 - 22. Вычислительные системы, с какой архитектурой наиболее дешевы?
 - а. кластерные системы;
 - б. параллельная архитектура с векторным процессором;
 - в. массивно-параллельная архитектура.
 - 23. Что в большей мере определяет производительность кластерной системы?
 - а. способ соединения процессоров друг с другом;

- б. тип используемых в ней процессоров;
- в. операционная система.

14.1.2. Вопросы для подготовки к практическим занятиям, семинарам

Постановка Цели и задач проекта на основе изучения литературы в области исследований. Классификация вычислительных систем (ВС с пакетным режимом обработки данных, ВС

коллективного пользования, ВС реального времени. ВС, использующие параллелизм данных. Принцип скалярной и векторной обработки, ВС на основе векторных и матричных процессоров, ВС на основе ассоциативных процессоров). Архитектуры компьютеров на схемах малой интеграции (однопроцессорные, векторно-конвейерные, параллельные системы класса SIMD); Архитектуры массово параллельных компьютеров на БИС, СБИС и гипербольших ИС (системы с распределенной разделяемой памятью и однокристальные системы, реконфигурируемые процессоры); Традиционные многопроцессорные модели распараллеливания (статическое и динамическое распараллеливание, архитектура суперскалярных процессоров и организация динамического распараллеливания, работа с памятью); Мультитредовые модели распараллеливания (мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления и потоков данных программ; модель выполнения мультитредовых программ и ее специфика; аппаратные средства для мультитредовой архитектуры).

Шинные, матричные и кубические структуры (гиперкуб, омега, баттерфляй, flip); Коммуникационные среды масштабируемых ВС, шины интерфейса ввода-вывода микропроцессора, особенности применения каналов ввода-вывода. Высокопроизводительные универсальные КС на основе масштабируемого когерентного интерфейса SCI (основные характеристики, логическая структура и архитектура, когерентность кэш-памятей); КС MYRINET (основные характеристики, адаптер «шина компьютера – линк сети», коммутаторы логический уровень протокола сети Myrinet, физическая реализация и ПО); КС транспьютеров (технология, передача данных системах фирмы Inmos, КС на базе микропроцессора TMS 320 C4x и КС на базе ADSP 2106X).

14.1.3. Темы индивидуальных заданий

- 1) Понятия и принципы теории «распределенных вычислительных систем».
- 2) Задачи планирования и обработки экспериментов для «распределенных вычислительных систем».
 - 3) Понятие управления в области «распределенных вычислительных систем».
 - 4) Космические «распределенных вычислительных систем».
 - 5) Эвристическое построение оптимального «распределенных вычислительных систем».
 - 6) Методы планирования в области «распределенных вычислительных систем».

14.1.4. Вопросы дифференцированного зачета

1. Программный уровень реализации разделяемой памяти. Механизм явной реализации когерентности.

Параллельное программирование для МРР систем:

- 2. Развитие параллельного программирования. Организация эффективных параллельных вычислений. Проблемы организации параллельных вычислений.
- 3. Параллельное программирование с использованием интерфейса передачи сообщений MPI.
 - 4. Стандарт Ореп МР. Примеры программирования.
 - 5. Стандарт PVM.
 - 6. Система программирования DVM,
 - 7. Система программирования mpC.
 - 8. Система программирования Linda.
- 9. Классические задачи «распределенного» программирования и программирования с «разделяемыми переменными».
 - 10. Прикладные задачи «синхронного параллельного программирования.
 - 11. Организация внешней памяти:
 - 12. Пути совершенствования систем внешней памяти. Типы устройств хранения данных.
- 13. Дисковые системы (RAID-массивы, технология дискового кэширования). Подходы к реализации систем хранения данных. Готовность систем хранения данных.

Надежность параллельных систем:

- 14. Отказоустойчивые системы. Различные модели отказоустойчивых систем (горячий резерв, репликация, параллельный сервер базы данных, MPP система).
- 15. Информационные системы высокой готовности. Отказоустойчивые системы на базе стандартных компонентов.

Оценка производительности ВС:

- 16. Способы оценки производительности ВС (пиковая и реальная производительность, способы измерения реальной производительности).
 - 17. Тест Linpack. Пакеты тестовых программ SPEC и ТРС.
 - 18. Тесты коммуникационной среды пакет РМВ 2.2.

Кластеры и массово параллельные системы (МРР):

- 19. Основные классы параллельных систем, универсальные ВС с фиксированной и программируемой структурой.
- 20. Специализированные BC с программируемой структурой (однородные BC, программируемые raw-микропроцессоры, ассоциативный процессор).
 - 21. Нейросетевые ВС.
 - 22. Многопроцессорные серверы (кластеры DIGITAL TruCluster).
- 23. Суперкомпьютеры Cray T3E-900, Cray T3E-1200. ВС из компонентов высокой готовности (Beowulf, Avalon).
 - 24. Проект суперкомпьютера Blue Gene фирмы IBM.
 - 25. Российские суперкомпьютеры МВС-100 и МВС-1000:
- 26. Архитектура и организация параллельных вычислений в MBC-100, организация передачи сообщений, реализация и инициация процесса ROUTER.
- 27. Архитектура МВС-1000/200 и его ПО, организация безопасного удаленного доступа и система планирования запуска заданий.
 - 28. Архитектура и ПО суперкомпьютера МВС-1000М.
 - 29. Развитие системного ПО параллельных суперкомпьютеров

14.1.5. Методические рекомендации

На этапе "Определение целей и задач этапа проекта. Разработка (актуализация) технического задания этапа проекта. Постановка индивидуальных задач в рамках выполнения этапа проекта." важно найти техническое решение задачи исследования. Для решения этой задачи можно воспользоваться методическими указаниями: "Шандаров, Е.С. Архитектура вычислительных систем: методические указания к лабораторным работам / Е.С. Шандаров; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2007. - 52 с.: Библиотека ТУСУР,"

На этапе "Выполнение индивидуальных задач в рамках этапа проекта" для выбранной архитектуры, необходимо разработать программное обеспечение, рекомендации по разработке которого можно найти в методических указананиях: "Бойченко, И.В. Программное обеспечение сетей ЭВМ: методические указания к лабораторным работам / И. В. Бойченко, А. И. Петров; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра автоматизированных систем управления. - Томск: ТУСУР, 2007. - 92 с.: Библиотека ТУСУР"

14.2. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 14.

Таблица 14 — Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

Категории обучающихся	Виды дополнительных оценочных материалов	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка

С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами исходя из состояния обучающегося на момент проверки

14.3. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.