МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Документ подписан электронной подписью	
Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820	
Владелец: Троян Павел Ефимович	
Действителен: с 19.01.2016 по 16.09.2019	Н
« »	2017 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ НА ЭВМ»

Уровень основной образовательной программы: <u>бакалавриат</u>
Направление(я) подготовки (специальность): <u>09.03.01 Информатика и вычислительная техника</u>
Профиль: Программное обеспечение средств вычислительной техники и
автоматизированных систем
Форма обучения:
Факультет: _ ЗиВФ, Заочный и вечерний факультет
Кафедра: АСУ, Кафедра автоматизированных систем управления
Курс: <u>5</u> Семестр: <u>10</u>
Учебный план набора <u>2012 г.</u>

Распределение рабочего времени:

Виды учебной работы	Семестр 10	Единицы
Лекции	8	часов
Лабораторные работы	10	часов
Практические занятия	не предусмотрено	часов
Курсовой проект/работа (КРС) (аудиторная)	не предусмотрено	часов
Всего аудиторных занятий	18	часов
Из них в интерактивной форме	4	часов
Самостоятельная работа студентов (СРС)	86	часов
Всего (без экзамена)	104	часов
Самост. работа на подготовку и сдачу экзамена	4	часов
Общая трудоемкость	108	часов
(в зачетных единицах)	3	ЗЕТ

Зачет – 10 семестр

Контрольная работа — 10 семестр

Томск 2017

Рассмотрена	и одо	брена	на	зас	седании	кафед	ры
протокол №	6	от «	6	>>	4		20 <u>17</u> г.

Рабочая программа составлена с учётом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 09.03.01 **Информатика и вычислительная техника** (квалификация (степень) «бакалавр»), утверждённого Приказом Министерства образования и науки Российской Федерации от 12 января 2016 г. № 5, рассмотрена и утверждена на заседании кафедры 06 апреля 2017 г., протокол № 6.

Разработчик, д.т.н., профессор каф. АСУ	М.Ю. Катаев
Зав. обеспечивающей кафедрой АСУ д.т.н., профессор	А.М. Кориков
Рабочая программа согласована с факультетом, профилирующе специальности.	ей и выпускающей кафедрами
Декан, ЗиВФ	И.В. Осипов
Заведующий профилирующей и выпускающей кафедрой АСУ, д.т.н., профессор	А.М. Кориков
Эксперт: Доцент каф. АСУ, к.т.н.	А.И. Исакова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

<u>**Цель дисциплины:**</u> ознакомить студентов с Обработкой Экспериментальных Данных на ЭВМ. Для этого необходимо уделить внимание изучению различных моделей представления экспериментальных данных (линейные и нелинейные), классификации задач обработки ((прямые и обратные) и (качественные и количественные)) и методов их решения (МНК, регрессия, некорректные задачи, интерполяция и др.). Подготовить к решению различных практических задач с использованием ОЭД.

Задачи дисциплины: сформировать навыки и умения связанные с проведением исследований: применять необходимые для построения моделей знания принципов действия и описания составных частей программы (информационных, методологических, алгоритмических и средств вычислительной техники); реализовывать программу средствами вычислительной техники; определять характеристики объектов профессиональной деятельности по разработанным моделям.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Обработка экспериментальных данных на ЭВМ» (ОЭД на ЭВМ) относится к дисциплинам по выбору. Успешное овладение дисциплиной предполагает предварительные знания по дисциплинам: «Дискретная математика», «Математическая логика и теория алгоритмов», «Теория вероятностей и математическая статистика», «Вычислительная математика». Знания, полученные при изучении данной дисциплины, будут востребованы при выполнении ВКР в объеме, предусмотренном направлением подготовки 09.03.01 «Информатика и вычислительная техника».

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Обработка экспериментальных данных на ЭВМ» (ОЭД на ЭВМ) направлен на формирование следующих компетенций:

Общепрофессиональные компетенции (ОПК):

– Способность осваивать методики использования программных средств для решения практических задач (ОПК-2)

В результате изучения дисциплины студент должен:

Знать:

- основные математические понятия и методы, принципы применения математики на практике;
- стандартные программные средства для решения задач в области планирования эксперимента;
- состав средств технологического оснащения, технологические возможности и области применения математических методов и алгоритмов при обработке данных эксперимента;
 - способы анализа данных измерений;

Уметь:

- строить графики функций одного переменного;
- исследовать функции одного и нескольких переменных на экстремум;
- применять физико-математические методы для решения задач в области планирования эксперимента с применением стандартных программных средств;

Владеть:

- математическим аппаратом построения устойчивых алгоритмов решения задач планирования эксперимента;
- навыками программирования на языках высокого уровня, а также работы в математических пакетах Scilab.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 3 зачетных единиц.

Вид учебной работы	Всего	Семестр		
	часов			
Аудиторные занятия (всего)	18	18		
В том числе:	_	_		
Лекции	8	8		

Лабораторные работы (ЛР)	10	10
Самостоятельная работа (всего)	86	86
В том числе:	_	_
Проработка лекционного материала	10	10
Подготовка к лабораторным работам	10	10
Подготовка к контрольной работе	20	20
Выполнение тестов для самоконтроля	20	20
Самостоятельное изучение тем теоретической части	26	26
Подготовка к экзамену (зачету)	4	4
Вид промежуточной аттестации (зачет, экзамен)		Зачет
Общая трудоемкость час	108	108
зач. ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Таблица 5.1

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия	Самост. работа ступентов Всего часов формируемые компетенции (ОК, ПК)		Формируемые компетенции (ОК, ПК)
1	2	3	4	5	6	7	8
1.	Экспериментальные исследования	2	1	ı	12	15	ОПК-2
2	Случайные величины и законы	1	1	_	12	14	ОПК-2
	распределения						
3	Метод наименьших квадратов.	1	1	ı	12	14	ОПК-2
4	Постановка обратных задач и	1	1	_	12	14	ОПК-2
	формализация						
5	Ошибки эксперимента и их	1	2	_	12	15	ОПК-2
	оценивание.						
6	Элементарная теория корреляции.	1	2	_	12	15	ОПК-2
7	Интервальные оценки.	1	2	_	14	17	ОПК-2
	ИТОГО	8	10	_	86	104	

5.2. Содержание разделов дисциплины

Таблица 5.2

№	Наименование	Содержание разделов	Трудоемкость	Формируемые
п/п	разделов		(час.)	компетенции
				$(OK, \Pi K)$
1	2	3	4	5
1.	Экспериментальные	Случайные величины. Вероятность.	2	ОПК-2
	исследования	Условные вероятности.		
		Независимые события. Формула		
		Байеса. Функция распределения.		
		Плотность распределения.		
		Математическое ожидание,		
		дисперсия и моменты.		
2	Случайные величины	Законы распределения случайной	1	ОПК-2
	и законы	величины. Равномерное		
	распределения	распределение вероятностей.		
		Дискретные распределения.		
		Непрерывные распределения.		

3	Метод наименьших	Аппроксимация функций. Метод	1	ОПК-2
	квадратов.	наименьших квадратов. Применение		
		МНК к линейным функциям.		
		Ковариационная матрица ошибок		
		неизвестных. МНК для линейных		
		уравнений. Матричный подход.		
		Ковариационная матрица МНК-		
		оценки. Приведение уравнений		
		МНК с неравноточными		
		наблюдениями к равноточным.		
		Линеаризация и решение.		
4	Постановка обратных	Прямые и обратные задачи.	1	ОПК-2
	задач и формализация	Математическое и физическое		
		толкование сущности прямых и		
		обратных задач. Эффективность		
		решения обратных количественных		
		задач. Учёт влияния мешающих		
		факторов (параметров) на		
		эффективность формализованной		
		процедуры оценивания.		
		Качественные обратные задачи		
		(распознавание). Решающие		
		правила. Вероятности ошибок и		
		правильного распознавания.		
		Обусловленность задачи и вычислений.		
5	Overegree programme control	. ~	1	ОПК-2
3	Ошибки эксперимента	Абсолютная и относительная ошибки. Ошибки исходной	1	OHK-2
	и их оценивание.	информации. Ошибки ограничения		
		и округления. Погрешности		
		результатов арифметических		
		действий.		
6	Элементарная теория	Корреляция и коэффициент	1	ОПК-2
	корреляции.	корреляции. Уравнения регрессии.	1	0111C 2
		Теоретические уравнения регрессии.		
		Геометрическая интерпретация		
		теоретического уравнения		
		регрессии.		
7	Интервальные	Понятие об интервальных оценках.	1	ОПК-2
	оценки.	Интервальное оценивание		
		параметра в случае малой выборки.		
		Распределение Пирсона.		
		Интервальная оценка дисперсии.		
		ИТОГО	8	

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№	Наименование обеспечивающих	№ № разделов данной дисциплины, для которых необходимо								
Π/Π	(предыдущих) дисциплин	изучен	изучение обеспечивающих (предыдущих) дисциплин							
		1	2	3	4	5	6	7	8	9
	Предшествующие дисциплины									
1.	Дискретная математика	+	+	+						
2.	Математическая логика и теория									
	алгоритмов					+				
3.	Вычислительная математика			+	+					
4.	Теория вероятностей и			+	+					·

	математическая статистика									
	Последующие дисциплины									
1.	Подготовка ВКР	+	+	+	+	+	+			

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень компетенций	Л	Л.Р.	CPC	Формы контроля
ОПК-2	+	+	+	Опрос на лекции, Тестовое задание, Реферат.

Л – лекция, Пр.3. – практические занятия, СРС – самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

Технологии интерактивного обучения при разных формах занятий

Texnosion in inference of terms up a pasible dopmar sur					
Формы Методы	Лекции (час)	Лабораторные работы (час)	Всего (час)		
Работа в команде		1	1		
Пресс-конференция	1	1	2		
Поисковый метод	_	1	1		
Итого интерактивных занятий					

Примечание.

- 1. «Работа в команде» происходит при изучении программных продуктов решения некорректных задач в лабораторной работе № 1.
- 2. «Поисковый метод» студенты используют при выборе алгоритмов вычисления параметра регуляризации (лаб. работа № 2).
- 3. Некоторые фрагменты лекционного материала преподаватель и основные результаты своих лабораторных работ (наиболее интересные исследования) студенты докладывают при помощи презентаций, устраивая подобие пресс-конференции.

7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

№	№ раздела	Наименование практических занятий	Трудо-	ОК, ПК		
Π/Π	дисциплины		емкость			
	из табл. 5.1		(час.)			
1	1	Экспериментальные исследования.	1	ОПК-2		
2	2	Случайные величины и законы распределения.	1	ОПК-2		
3	3	Метод наименьших квадратов.	1	ОПК-2		
4	4	Постановка обратных задач и формализация.	1	ОПК-2		
5	5	Ошибки эксперимента и их оценивание.	2	ОПК-2		
6	6	Элементарная теория корреляции.	2	ОПК-2		
7	7	Интервальные оценки.	2	ОПК-2		
	ИТОГО 10					

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (СЕМИНАРЫ) – не предусмотрены РУП.

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

No	№ раздела	Тематика самостоятельной работы	Трудо-	ОК, ПК	Контроль
Π/Π	дисциплины	(детализация)	емкость		выполнения работы
	из табл. 5.1		(час.)		
1.	1÷7	Проработка лекционного материала	10	ОПК-2	Опрос на лекции
2.	1÷7	Подготовка к лабораторным	10	ОПК-2	Отчет по
		работам			лабораторной
					работе
3.	2, 5, 6	Подготовка к контрольной работе	20	ОПК-2	Конспект, защита
					реферата
4.	1÷7	Выполнение тестов для	20	ОПК-2	Проверка тестов
		самоконтроля			
5.	5, 6	Самостоятельное изучение тем	26	ОПК-2	Конспект, отчет по
		теоретической части			теме, тест
Итого)		86		

Темы для самостоятельного изучения

- 1. Законы распределения вероятностей расхождений экспериментального и теоретического полей.
- 2. Практические методы проверки нормальности распределения случайных погрешностей.

Варианты тем для контрольной работы

- 1. Погрешность функции. Погрешность функции нескольких аргументов.
- 2. Детерминированные и статистические зависимости.
- 3. Нормальное распределение. Правило «трех сигм».

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ – не предусмотрена РУП.

11. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА – не предусмотрена.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 12.1 Основная литература

1. Дробот, Павел Николаевич. Теория ошибок и обработка результатов измерений : учебное пособие / П. Н. Дробот ; Министерство образования и науки Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. - Томск : ТУСУР, 2011. - 83 с. [в библиотеке ТУСУР – 20]

12.2 Дополнительная литература

- 1. Катаев, М.Ю. Обработка экспериментальных данных на ЭВМ: Учебное пособие / М.Ю. Катаев, А.Я. Суханов. Томск: ТУСУР, 2007. 208 с. [в библиотеке ТУСУР 98]
- 2. Светлаков, А.А. Традиционное и нетрадиционное оценивание неизвестных величин : учебное пособие: в 2 ч. / А.А. Светлаков. Томск : ТУСУР. Ч.1: Простейшие задачи оценивания неизвестных величин по результатам их экспериментальных измерений. Томск : ТУСУР, 2007. 549 с. [в библиотеке ТУСУР 25]
- 3. Бакушинский, Анатолий Борисович. Итеративные методы решения некорректных задач : научное издание / А. Б. Бакушинский, А. В. Гончарский. М. : Наука, 1989. 128 с. [в библиотеке ТУСУР 3]

12.3. Перечень пособий, методических указаний и материалов, используемых в учебном процессе 12.3.1. Обязательные учебно-методические пособия

- 1. Антипин, М. Е. Информационные технологии обработки данных: Методические указания по проведению <u>лабораторных работ</u> [Электронный ресурс] / Антипин М. Е. Томск: ТУСУР, 2012. 8 с. Режим доступа: https://edu.tusur.ru/publications/1645
- 2. Антипин, М. Е. Информационные технологии обработки данных: Методические указания по выполнению студентами **самостоятельной работы** [Электронный ресурс] / Антипин М. Е. Томск: ТУСУР, 2012. 4 с. Режим доступа: https://edu.tusur.ru/publications/1646

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

Ассоциация консультантов по экономике и управлению (АКЭУ) http://www.akeu.ru. Официальный сайт компании «Эксперт Системс» – http://www.expert-systems.com Сайт национального открытого университета ИНТУИТ http://www. intuit.ru Сайт «Управление изменениями в компании» http://www.markus.spb.ru.

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория, с количеством посадочных мест не менее 22-24, оборудованная доской и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

13.1.2. Материально-техническое обеспечение для лабораторных работ

Для проведения лабораторных занятий используется учебно-исследовательская вычислительная лаборатория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 4 этаж, ауд. 438. Состав оборудования: Учебная мебель; Экран с электроприводом DRAPER BARONET – 1 шт.; Мультимедийный проектор TOSHIBA – 1 шт.; Компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами типа Samsung 18.5" S19C200N— 10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; Matlab v6.5.

13.1.3. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 1 этаж, ауд. 100. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационно-образовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 14.1.

Таблица 14.1 – Дополнительные средства оценивания для студентов с инвалидностью

<u> 1 аолица 14.1 — Д</u> ополн	ительные средства оценивания для студ	центов с инвалидностью
Категории студентов	Виды дополнительных оценочных	Формы контроля и оценки результатов
	средств	обучения
С нарушениями слуха	Тесты, письменные самостоятельные	Преимущественно письменная проверка
	работы, вопросы к зачету, контрольные	
	работы	
С нарушениями зрения	Собеседование по вопросам к зачету,	Преимущественно устная проверка
	опрос по терминам	(индивидуально)
С нарушениями	Решение дистанционных тестов,	
опорно- двигательного	контрольные работы, письменные	Преимущественно дистанционными
аппарата	самостоятельные работы, вопросы к	методами
	зачету	
С ограничениями по	Тесты, письменные самостоятельные	Преимущественно проверка методами,
общемедицинским	работы, вопросы к зачету, контрольные	исходя из состояния обучающегося на
показаниям	работы, устные ответы	момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностямиздоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услугассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;

- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	утве Проректор по уче	РЖДАЮ бной работе
		П. Е. Троян
	«»	2017 г.
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ П	О УЧЕБНОЙ ДИСЦИПЛИ	НЕ
«ОБРАБОТКА ЭКСПЕРИМЕНТА.	ЛЬНЫХ ДАННЫХ НА ЭВМ	⁄I»
Уровень основной образовательной программы	бакалавриат	
Направление подготовки 09.03.01 – Информа	тика и вычислительная техні	ика
Профиль Программное обеспечение средств вычисл	ительной техники и	
автоматизированных систем		
Форма обучения		
Факультет ЗиВФ, Заочный и вечерний факультет		
Кафедра автоматизированных систем управления		
Курс _ 5		
Семестр10		
Учебный план набора		
Зачет <u>10</u> семестр		
Контрольная работа <u>10</u> семестр		

Томск 2017

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Обработка экспериментальных данных на ЭВМ» (ОЭД) и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной «Обработка экспериментальных данных на ЭВМ» компетенций приведен в таблице 1.

Габлица 1 – Перечень закрепленных за дисциплиной компетенций

т аолица	юлица I — Перечень закрепленных за дисциплиной компетенций			
Код	Формулировка компетенции	Этапы формирования компетенции		
ОПК-2	Способность	Знать:		
	осваивать	– Методы обработки экспериментальных данных на ЭВМ на основе		
	методики	нечеткой логики;		
	использования	– Методы обработки экспериментальных данных на ЭВМ на основе		
	программных	эволюционных алгоритмов;		
	средств для	– Методы обработки экспериментальных данных на ЭВМ на основе		
	решения	нейронных сетей;		
	практических	Уметь:		
	задач	– Производить выбор наиболее подходящего метода и разрабатывать		
		алгоритм решения поставленной задачи;		
		– Реализовывать разработанный алгоритм с использованием языков		
		программирования;		
		– Проводить анализ корректности и вычислительной сложности		
		алгоритмов и программ;		
		Владеть:		
		- методами, приемами и способами использования основ математических		
		знаний в решении задач анализа и обработки экспериментальных данных		
		на ЭВМ, а также настраивать программно-аппаратные комплексы для		
		решения практических задач;		
		- навыками программирования на языках высокого уровня, а также		
		работы в математических пакетах SciLab.		

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ 2.1 Компетенции ОПК-2

ОПК-2: Способность осваивать методики использования программных средств для решения практических задач.

Для формирования компетенций необходимо осуществить ряд этапов. Этапы формирования компетенций, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	Благодаря способности осваивать методики использования программных средств знать: — методы обработки экспериментальных данных на ЭВМ на основе нечеткой логики; — методы обработки экспериментальных данных на ЭВМ на основе нечеткой логики;	Благодаря способности осваивать методики использования программных средств уметь: – производить выбор наиболее подходящего метода и разрабатывать алгоритм решения поставленной задачи; – реализовывать разработанный алгоритм с	Благодаря способности осваивать методики использования программных средств владеть: — методами, приемами и способами использования основ математических знаний в решении задач анализа и обработки экспериментальных

	основе эволюционных алгоритмов; — методы обработки экспериментальных данных на ЭВМ на основе нейронных сетей.	использованием языков программирования; — проводить анализ корректности и вычислительной сложности алгоритмов и программ.	данных на ЭВМ, а также настраивать программно-аппаратные комплексы для решения практических задач; — навыками программирования на языках высокого уровня, а также работы в математических пакетах SciLab.
Виды занятий	Лекции, Лабораторные занятия, групповые консультации	Лекции, Лабораторные занятия, выполнение домашнего задания, СРС	Лабораторные занятия, СРС
Используемы е средства оценивания	Тест;Контрольная работа;Реферат;зачет	 Проверка правильности выполнения Лабораторных заданий; Контрольная работа; Конспект самостоятельной работы; зачет 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уровнем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

1 аолица 4 — Показатели и критерии оценивания компетенции на этапах						
Показатели и	Знать	Уметь	Владеть			
критерии	Sharb	3 MC I B	БладетБ			

ОТЛИЧНО (высокий уровень)	 Знает, с какими математическими знаниями связана постановка задач анализа и обработки экспериментальных данных на ЭВМ Знает, в чем заключаются отличия основных методов анализа и обработки изображений; Понимает важную роль стандартизации правил анализа и обработки экспериментальных данных на ЭВМ; 	 Умеет читать и составлять документы любой математической сложности; Умеет использовать основы математических знаний; Умеет использовать современные информационно-коммуникационных технологии для решения задач анализа и обработки экспериментальных данных на ЭВМ; 	 Владеет методами, приемами и способами основы математических знаний в области анализа и обработки экспериментальных данных на ЭВМ; Способен читать и понимать математическую литературу анализа и обработки экспериментальных данных на ЭВМ;
ХОРОШО (базовый уровень)	 Знает, какими основными математическими знаниями, законами и методическими указаниями регламентируются методы анализа и обработки экспериментальных данных на ЭВМ Понимает важную роль стандартизации правил анализа и обработки экспериментальных данных на ЭВМ 	 Умеет читать и составлять основные документы анализа и обработки экспериментальных данных на ЭВМ; Умеет использовать современные информационнокоммуникационных технологии для поиска решений в области анализа и обработки экспериментальных данных на ЭВМ; 	 Владеет методами, приемами и способами анализа и обработки экспериментальных данных на ЭВМ; Способен понимать содержание отчетности в области анализа и обработки экспериментальных данных на ЭВМ;
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	 Имеет представление о нормативной регламентации правил анализа и обработки экспериментальных данных на ЭВМ; Понимает важную роль стандартизации методов в области анализа и обработки экспериментальных данных на ЭВМ; 	— Умеет использовать современные информационно-коммуникационных технологии для решения основных задач анализа и обработки экспериментальных данных на ЭВМ;	— Владеет основами метода анализа и обработки экспериментальных данных на ЭВМ;

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе, приведенном ниже.

3.1 Темы лабораторных занятий

- 1. Экспериментальные исследования.
- 2. Случайные величины и законы распределения.
- 3. Метод наименьших квадратов.

- 4. Постановка обратных задач и формализация.
- 5. Ошибки эксперимента и их оценивание.
- 6. Элементарная теория корреляции.
- 7. Интервальные оценки.

3.2 Пример вариантов контрольных работ

Пример варианта задания контрольной работы по разделу 1

- 1. Цель и задачи курса, краткие исторические сведения о развитии методов обработки графических изображений. 2. Задачи обработки графических изображений.
- 3. Теоретические основы процессов формирования цифровых изображений графических объектов

Пример варианта задания контрольной работы по разделу 2

- 1. Регистрация визуальной информации
- 2. Представление изображений в цифровой форме Формирование изображений в цифровой форме регистрация, дискретизация и квантование по уровню.
- 3. Представление цветных изображений.

Пример варианта задания контрольной работы по разделу 3

- 1. Преобразование изображений в пространственной области.
- 2. Методы поэлементной обработки изображений: логарифмические, степенные, кусочно-линейные функции преобразования яркости изображения, улучшение изображения с помощью гистограмм.
- 3. Методы окрестностной обработки: свертка и корреляция.

Пример варианта задания контрольной работы по разделу 4

- 1. Маски фильтров для усиления краев и подчеркивания границ, удаления шума, сглаживания изображений.
- 2. Комбинирование методов пространственного улучшения.
- 3. Обработка и восстановление цветных изображений

Пример варианта задания контрольной работы по разделу 5

- 1. Восстановление изображений Пространственные, частотные и статистические параметры шума.
- 2. Подавление шума пространственной фильтрацией. Подавление периодического шума частотной фильтрацией.
- 3. Обработка цветных изображений. Преобразования геометрические, цветовые.

Пример варианта задания контрольной работы по разделу 6

- 1. Сглаживание и повышение резкости цветных изображений. Обнаружение контуров с помощью градиента. Цветовая сегментация.
- 2. Морфологическая обработка изображений Дилатация и эрозия двоичных и полутоновых изображений. Размыкание и замыкание. Некоторые основные морфологические алгоритмы и их применения.
- 3. Сегментация изображений Обнаружение точек, линий и перепадов на изображении. Глобальный анализ с помощью преобразования Хафа.

3.3 Домашнее индивидуальное задание

- 1. Составить словарь терминов и определений направления «Обработка экспериментальных данных на ЭВМ»
- 2. Составить список основных алгоритмов направления «Обработка экспериментальных данных на ЭВМ»
- 3. Составить список программного обеспечения в области направления «Обработка экспериментальных данных на ЭВМ»
 - 4. Что такое «Обработка экспериментальных данных на ЭВМ»? Модель, план, анализ.
- 5. Какие устройства включены в «Обработка экспериментальных данных на ЭВМ». Модель, план, анализ.
- 6. Какие научные направления позволяют управлять «Обработка экспериментальных данных на ЭВМ».

3.4 Темы для самостоятельной работы (темы рефератов)

- 1. Понятия и принципы теории «Обработка экспериментальных данных на ЭВМ».
- 2. Задачи планирования и обработки экспериментов для «Обработка экспериментальных данных на ЭВМ».
- 3. Понятие управления в области «Обработка экспериментальных данных на ЭВМ».
- 4. Космические «Обработка экспериментальных данных на ЭВМ».
- 5. Эвристическое построение оптимального «Обработка экспериментальных данных на ЭВМ».
- 6. Методы планирования в области «Обработка экспериментальных данных на ЭВМ».

3.5 Вопросы и задачи для подготовки к зачету (для студентов, не выполнивших все задания в течение семестра)

- 1. Какие классы данных (форматы) представления пикселов изображения существуют?
- 2. Какие типы растровых изображений используются в пакете IPT?
- 3. С какими форматами графических файлов можно работать в системе MatLab?
- 4. Какие аргументы функции imshow изменяют контраст полутонового изображения при его выводе на экран?
- 5. Какие вы знаете функции преобразования типов изображений?
- 6. Каким образом осуществляется дискретизация сигнала?
- 7. Как выбирается величина шага дискретизации?
- 8. Каким образом осуществляется квантование сигнала?
- 9. Что такое гистограмма?
- 10. Какая функция используется для получения гистограммы?
- 11. В чем отличие гистограммы полутонового изображения от гистограммы палитрового изображения?
- 12. Что такое эквализация гистограммы изображения? Какая функция выполняет эквализацию?
- 13. Какие типы фильтров создает функция по формированию масок фильтров fspecial?
- 14. В чем заключается алгоритм двумерной свертки?
- 15. В каких функциях присутствует алгоритм двумерной свертки?
- 16. В чем отличие алгоритма медианной фильтрации от алгоритма фильтрации с помощью операции усреднения с порогом?
- 17. Какие типы шумов формирует функция по зашумлению изображений imnoise?
- 18. Для каких целей можно использовать функцию freqz2?
- 19. Каким образом можно сформировать маску линейного фильтра по желаемой АЧХ?
- 20. Какая функция позволяет сформировать двумерный фильтр из одномерного?
- 21. Что обуславливает искажения изображения при его формировании?
- 22. Какие логические операции над бинарными изображениями вы знаете?
- 23. В чем назначение структурообразующего элемента в морфологических операциях?
- 24. Для чего используются морфологические операции?
- 25. Какие морфологические операции обработки изображения относятся к базовым?
- 26. Какие операции являются комбинированием эрозии и дилатации?
- 27. Какие функции пакета ІРТ выполняют операции эрозии и дилатации, замыкания, размыкания?
- 28. В чем заключается сегментация изображения?
- 29. Какие признаки используются для сегментации?
- 30. В чем заключается метод выращивания областей, использующийся для сегментации изображения?
- 31. В чем заключается метод разделения, использующийся для сегментации изображения?
- 32. Что является входными параметрами функции сегментации методом разделения?
- 33. В чем заключается преобразование яркостного среза?
- 34. Какие параметры возвращает функция impixel?
- 35. Какие функции используются для выполнения двумерного прямого и обратного преобразования Фурье в системе SciLab?
- 36. Зачем используется двумерная дискретизация? Приведите примеры функции дискретизации.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

1. Дробот, Павел Николаевич. Теория ошибок и обработка результатов измерений : учебное пособие / П. Н. Дробот ; Министерство образования и науки Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. - Томск : ТУСУР, 2011. - 83 с. [в библиотеке ТУСУР – 20]

Учебно-методические пособия по работе студентов

- 1. Антипин, М. Е. Информационные технологии обработки данных: Методические указания по проведению <u>лабораторных работ</u> [Электронный ресурс] / Антипин М. Е. Томск: ТУСУР, 2012. 8 с. Режим доступа: https://edu.tusur.ru/publications/1645
- 2. Антипин, М. Е. Информационные технологии обработки данных: Методические указания по выполнению студентами **самостоятельной работы** [Электронный ресурс] / Антипин М. Е. Томск: ТУСУР, 2012. 4 с. Режим доступа: https://edu.tusur.ru/publications/1646