МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖЛАЮ Документ подписан электронной подписью	
Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820	
Владелец: Троян Павел Ефимович	[H
Действителен: с 19.01.2016 по 16.09.2019	2017
« <u> </u>	2017 г

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ»

Уровень основной образовательной программы:	бакалавриат			
Направление(я) подготовки (специальность): <u>09.03</u>	3.01 Информатика	и вычисл	ительная	техника
Профиль: <u>Программное обеспечение с</u> автоматизированных систем	редств вычисли	тельной	техники	И
Форма обучения:				
Факультет: ЗиВФ, Заочный и вечерний фак	сультет			
Кафедра: АСУ, Кафедра автоматизирова	нных систем упра	вления		
Курс: <u>4</u> Семестр: <u>8</u>				
Учебный план набора <u>2012</u> г.				
Распределение рабочего времени:			_	
Виды учебной работы	Семестр 8	Единицы		
Лекции	не предусмотрено	часов		

риды ученни работы	Cemeer p o	Единицы
Лекции	не предусмотрено	часов
Лабораторные работы	не предусмотрено	часов
Практические занятия	14	часов
Курсовой проект/работа (КРС) (аудиторная)	не предусмотрено	часов
Всего аудиторных занятий	14	часов
Из них в интерактивной форме	14	часов
Самостоятельная работа студентов (СРС)	90	часов
Всего (без экзамена)	104	часов
Самост. работа на подготовку и сдачу экзамена	4	часов
Общая трудоемкость	108	часов
(в зачетных единицах)	3	ЗЕТ

зачет – восьмой семестр

Томск 2017

Рабочая программа составлена с учётом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) третьего поколения по направлению подготовки 09.03.01 Информатика и вычислительная техника (квалификация (степень) «бакалавр»), утверждённого Приказом Министерства образования и науки Российской Федерации от 12 января 2016 г. № 5, рассмотрена и утверждена на заседании кафедры 24 января 2017 г., протокол № 2.

Разработчик, д.т.н., профессор каф. АСУ	М.Ю. Катаев
Зав. обеспечивающей кафедрой АСУ д.т.н., профессор	А.М. Кориков
Рабочая программа согласована с факультетом, профилирующей и выпуспециальности.	ускающей кафедрами
Декан, к.фм.н., доцент	И.В. Осипов
Заведующий профилирующей и выпускающей кафедрой АСУ, д.т.н., профессор	А.М. Кориков
Эксперт: Доцент каф. АСУ, к.т.н.	А.И. Исакова

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Подготовка специалистов обеспечивается всем комплексом учебно-воспитательной работой высшего учебного заведения, одним из важнейших элементов которого выступает научно-исследовательская работа студентов. Дисциплина «Распределенные вычислительные системы» – важная и неотъемлемая часть учебного процесса и проводится в семинарских и практических учебных занятий. РВС обеспечивает приобретение студентами необходимых навыков исследовательской деятельности и предполагает постепенное приобщение их к самостоятельному решению задач, уже разработанных наукой.

<u>Цель дисциплины</u> «Распределенные вычислительные системы» – является изучение общих сведений о многопроцессорных вычислительных системах, включая их назначение, область применения, оценку производительности, описание компонент и основных архитектур. Особое внимание уделено рассмотрению кластерных вычислительных систем.

<u>Задача дисциплины</u> «Распределенные вычислительные системы» формирование умений и навыков по следующим направлениям деятельности:

- знание общих принципов вычислительных систем;
- знание математических основ, способов организации и особенностей проектирования процессоров баз данных, потоковых процессоров, нейронных процессоров и процессоров с многозначной (нечеткой) логикой;
 - знание архитектур многопроцессорных вычислительных систем;
 - умение применять решения, с помощью которых достигается устойчивая работа систем;
 - владение математическими основами организации вычислительных систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Распределенные вычислительные системы» относится к числу дисциплин профессионального цикла (по выбору). Успешное овладение дисциплиной предполагает предварительные знания по дисциплинам: «ЭВМ и периферийные устройства», «Сети и телекоммуникации», а также навыки программирования на языках высокого уровня, также работы в математических пакетах Matlab, MathCAD.

Знания, полученные при изучении дисциплины «РВС», будут использованы студентами в следующих дисциплинах: «Проектирование и техническое сопровождение компьютерных сетей», «Системы цифровой обработки сигналов».

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Распределенные вычислительные системы» направлен на формирование следующих компетенций:

Общепрофессиональные компетенции (ОПК):

Способность осваивать методики использования программных средств для решения практических задач (ОПК-2).

Способность участвовать в настройке и наладке программно-аппаратных комплексов (ОПК-4).

В результате изучения дисциплины студент должен:

Знать:

- общие принцы построения распределенных вычислительных систем;
- математических основы, способы организации и особенности проектирования процессоров баз данных, потоковых процессоров, нейронных процессоров и процессоров с многозначной (нечеткой) логикой;
- архитектуры многопроцессорных вычислительных систем;
- методы и способы повышения эффективности и надежности процессов обработки и передачи данных и знаний в вычислительных машинах, комплексах и компьютерных сетях.

Уметь:

- применять решения, с помощью которых достигается устойчивая работа вычислительных систем;
- анализировать архитектуру вычислительных систем;
- применять основные методы проектирования сложных вычислительных систем с использованием объектно-ориентированного подхода;
- пользоваться языками и инструментальными средствами распределенного и параллельного программирования;
- организовать глобально распределенную обработку данных;

- программировать системы виртуальной реальности и мультимедийного общения;
- записывать модели и методы создания программ и программных систем для распределенной обработки данных;
- создавать высокоуровневые алгоритмы моделирования и управления сложными вычислительными системами.

Владеть:

- математическими основами организации вычислительных систем; навыками применения современных базовых алгоритмов;
- навыками работы в комплексных средах создания программного обеспечения;
- навыками проектирования распределенных вычислительных систем с использованием объектно-ориентированного подхода;
 - навыками программирования в области распределенных и параллельных технологий;
- навыками программирования на языках высокого уровня, а также работы в математических пакетах Matlab, MathCAD.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет 3 зачетных единицы.

Вид учебной работы	Всего часов	Семестр 8
Аудиторные занятия (всего)	14	14
В том числе:	_	_
Лекции	не предусмотрены	_
Лабораторные работы (ЛР)	не предусмотрены	_
Практические занятия (ПЗ)	14	14
Курсовые работы	не предусмотрены	
Коллоквиумы (К)	_	_
Подготовка реферата	_	_
Другие виды аудиторной работы		
Самостоятельная работа (всего)	90	90
В том числе:	_	_
Проработка лекционного материала	_	_
Подготовка к практическим занятиям	30	30
Самостоятельное изучение тем теоретической части	60	60
Подготовка курсовой работы		
Подготовка к экзамену (зачету)	4	4
Вид промежуточной аттестации (зачет, экзамен)		зачет
Общая трудоемкость час, зач. ед.	108	108
	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1. Разделы дисциплин и виды занятий

Таблица 5.1

No	Наименование раздела дисциплины	Практ.	CPC	Всего	Формируемые
п/п		зан.		час.	компетенции
					(ОПК)
1.	ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ПОНЯТИЕ ФОН- НЕЙМАНОВСКОЙ АРХИТЕКТУРЫ	4	15	19	ОПК-2, ОПК-4
2.	ТОПОЛОГИИ КОММУТАЦИОННЫХ СЕТЕЙ	2	15	17	ОПК-2, ОПК-4
	МНОГОПРОЦЕССОРНЫХ ВС (МВС)		13	17	OTH 2, OTH 4
3.	ПРОСТЫЕ И СОСТАВНЫЕ КОММУТАТОРЫ	2	15	17	ОПК-2, ОПК-4
4.	КЛАССИФИКАЦИЯ АРХИТЕКТУР ВС.	2	15	17	ОПК-2, ОПК-4
5.	ОТКАЗОУСТОЙЧИВЫЕ СИСТЕМЫ	2	15	17	ОПК-2, ОПК-4
6.	ОСНОВНЫЕ КЛАССЫ ПАРАЛЛЕЛЬНЫХ СИСТЕМ	2	15	17	ОПК-2, ОПК-4
	ИТОГО	14	90	104	

5.2. Содержание разделов дисциплины – лекции не предусмотрены РУП.

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими

(предыдущими) и обеспечиваемыми (последующими) дисциплинами

No	Наименование обеспечивающих	№ разделов данной дисциплины, для которых			
п/п	(предыдущих) дисциплин	необходимо изучение обеспечивающих (предыдущих)			
		дисциплин			
	1 2 3				
	Предыдущие дисциплины				
1.	1. ЭВМ и периферийные устройства +		+	+	
2.	Сети и телекоммуникации	+		+	
	Послед	ующие дисциплинь	Ы		
1.	Проектирование и техническое	1		1	
	сопровождение компьютерных сетей	+	+	+	
2.	Системы цифровой обработки сигналов		+	+	

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень	Практика	CPC	Формы контроля	
компетенций			(примеры)	
ОПК-2	+	+	Устный ответ на практическом занятии, дом. задание, проверка	
			его на семинаре	
ОПК- 4	+	+	Отчет по практической работе, дом. задание, тест	

СРС – самостоятельная работа студента

6. МЕТОДЫ И ФОРМЫ ОРГАНИЗАЦИИ ОБУЧЕНИЯ

Для успешного освоения дисциплины применяются различные образовательные технологии, которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе, с учетом требований к объему занятий в интерактивной форме.

Технологии интерактивного обучения при разных формах занятий

Формы	Практические занятия (час)	Всего
Методы		(час)
Работа в команде	4	4
Пресс-конференция	6	6
Поисковый метод	4	4
Итого интерактивных занятий	14	14

Примечание.

- 1. «Работа в команде» происходит при коллективном обсуждении тем.
- 2. «Поисковый метод» студенты используют при выборе архитектур ВС.
- 3. Основные результаты своих работ (наиболее интересные исследования) студенты докладывают при помощи презентаций, устраивая подобие пресс-конференции на практических занятиях.

7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ – не предусмотрены РУП.

8. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (СЕМИНАРЫ)

Практические занятия предусматривают закрепление основных вопросов в области организации малого бизнеса. Практические занятия проходят в виде семинаров в соответствии с требованиями, обозначенными в методических указаниях, указанных в 12.3.1 разделе литературы [1-2].

No	№ раздела		Трудо-	Компетенции
Π/Π	дисциплины из	Тематика практических занятий (семинаров)	емкость	ОК, ПК
	табл. 5.1		(час.)	
	1. ОСНОВНЫЕ	Раздел 1 Классификация вычислительных систем		
	ОПРЕДЕЛЕНИЯ	(ВС с пакетным режимом обработки данных, ВС		ОПК-2,
1	И ПОНЯТИЕ	коллективного пользования, ВС реального времени.	4	ОПК-2, ОПК-4
	ФОН-	ВС, использующие параллелизм данных. Принцип		OHK-4
	НЕЙМАНОВСК	скалярной и векторной обработки, ВС на основе		

				0
	ОЙ АРХИТЕКТУРЫ	векторных и матричных процессоров, ВС на основе ассоциативных процессоров). Архитектуры компьютеров на схемах малой интеграции (однопроцессорные, векторно-конвейерные, параллельные системы класса SIMD); Архитектуры массово параллельных компьютеров на БИС, СБИС и гипербольших ИС (системы с распределенной разделяемой памятью и однокристальные системы, реконфигурируемые процессоры); Традиционные многопроцессорные модели распараллеливания (статическое и динамическое распараллеливание, архитектура суперскалярных процессоров и организация динамического распараллеливания, работа с памятью); Мультитредовые модели распараллеливания (мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления и потоков данных программ; модель		
		выполнения мультитредовых программ и ее специфика; аппаратные средства для		
2	2. ТОПОЛОГИИ КОММУТАЦИО ННЫХ СЕТЕЙ МНОГОПРОЦЕ ССОРНЫХ ВС (МВС)	мультитредовой архитектуры). Шинные, матричные и кубические структуры (гиперкуб, омега, баттерфляй, flip); Коммуникационные среды масштабируемых ВС, шины интерфейса ввода-вывода микропроцессора, особенности применения каналов ввода-вывода. Высокопроизводительные универсальные КС на основе масштабируемого когерентного интерфейса SCI (основные характеристики, логическая структура и архитектура, когерентность кэш-памятей); КС МҮRINET (основные характеристики, адаптер «шина компьютера — линк сети», коммутаторы логический уровень протокола сети Мугіпеt, физическая реализация и ПО); КС транспьютеров (технология, передача данных системах фирмы Inmos, КС на базе микропроцессора TMS 320 C4х и КС на базе ADSP 2106X).	2	ОПК-2, ОПК-4
3	3. ПРОСТЫЕ И СОСТАВНЫЕ КОММУТА- ТОРЫ	коммутаторы с временным и пространственным разделением, Клоза и баньян-сети, распределенные составные коммутаторы (критерии выбора графов межмодульных связей, графы с минимальным диаметром, симметричные графы, кубические графы), графы с заданными гомоморфизмами, управление коммутаторами, составной коммутатор системы МВС 1000. Процессы и критические секции (программные средства порождения/уничтожения процессов fork и join, синхронизация процессов); реализация взаимного исключения, синхронизирующие примитивы, синхронизация процессов посредством семафоров, мониторы, дедлоки и защита от них	2	ОПК-2, ОПК-4
4	4. КЛАССИФИКА ЦИЯ АРХИТЕКТУР ВС.	Проблема когерентности памяти ВС. Механизмы неявной реализации когерентности (аппаратнопрограммные реализации механизмов когерентности, однопроцессорный и многопроцессорный подходы). Аппаратный уровень разделяемой памяти (архитектуры систем с разделяемой памятью, симметричные мультипроцессоры с сосредоточенной	2	ОПК-2, ОПК-4

	системы (RAID-массивы, технология дискового кэширования). Подходы к реализации систем хранения данных. Готовность систем хранения данных.		
5. ОТКАЗОУСТОІ ЧИВЫЕ СИСТЕМЫ	данных. Различные модели отказоустойчивых систем (горячий резерв, репликация, параллельный сервер базы данных, МРР система). Информационные системы высокой готовности. Отказоустойчивые системы на базе стандартных компонентов. Способы оценки производительности ВС (пиковая и реальная производительность, способы измерения реальной производительности). Тест Linpack. Пакеты тестовых	2	ОПК-2, ОПК-4
6. ОСНОВНЫЕ КЛАССЫ ПАРАЛЛЕЛЬ- НЫХ СИСТЕМ	Gene фирмы IBM. Архитектура и организация	2	ОПК-2, ОПК-4
	Архитектура и ПО суперкомпьютера МВС-1000М. Развитие системного ПО параллельных суперкомпьютеров и сетевые вычисления на базе технологий GRID. ИТОГО	14	

9. САМОСТОЯТЕЛЬНАЯ РАБОТА

$N_{\underline{0}}$	№ раздела	Тематика самостоятельной	Трудо-		Контроль
Π/Π	дисциплины	работы	емкость	ОПК	выполнения работы
	из табл. 5.1	(детализация)	(час.)		(Опрос, тест,
					дом.задание, и т.д)
					Опрос и проверка на
		Подготовка к практическим		практических	
1.	6	и семинарским занятиям	30	ОПК-2, ОПК-4	занятиях,
		и семинарским занитиям			выступление на
					семинаре
2.	6	Самостоятельное изучение	60	ОПК-2, ОПК-4	Дом. задание, тест
۷٠	U	тем теоретической части	00	OHK-2, OHK-4	дом. задание, тест
]	ИТОГО	90		90

Темы для самостоятельного изучения.

- 1) Что такое практическая значимость работы.
- 2) В чем заключается актуальность темы исследования.
- 3) Практически значимые прикладные задачи на предприятии.

10. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ – не предусмотрена РУП.

11. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА не предусмотрена для студентов ЗиВФ.

12. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

12.1 Основная литература

1. Панов, С. А. Вычислительные машины, системы и сети: Курс лекций [Электронный ресурс] / Панов С. А. — Томск: ТУСУР, 2015. — 81 с. — Режим доступа: https://edu.tusur.ru/publications/5002

12.2 Дополнительная литература

- 1. Шевченко, Валерий Павлович. Вычислительные системы, сети и телекоммуникации [Текст]: учебник для вузов / В. П. Шевченко; Московский авиационный институт (национальный исследовательский университет) (М.). М.: КноРус, 2012. 288 с. (5 экз.)
- 2. Гриценко, Ю. Б. Вычислительные системы, сети и телекоммуникации: Учебное пособие [Электронный ресурс] / Гриценко Ю. Б. Томск: ТУСУР, 2015. 134 с. Режим доступа: https://edu.tusur.ru/publications/5053

12.3.1 Учебно-методическое пособие по самостоятельной работе студентов

1.Боровской, И. Г. Проблемно-ориентированные вычислительные системы: Методические указания по выполнению практических работ и заданий самостоятельной подготовки Іля специальностей: 230100 - «Информатика и вычислительная техника», 230400 - «Информационные системы и технологии» [Электронный ресурс] / Боровской И. Г. — Томск: ТУСУР, 2014. — 59 с. — Режим доступа: https://edu.tusur.ru/publications/3937

2.Замятин, Н. В. Вычислительные системы: Методические указания для направление подготовки магистров 230100.68 «Информатика и вычислительная техника» [Электронный ресурс] / Замятин Н. В. — Томск: ТУСУР, 2012. — 11 с. — Режим доступа: https://edu.tusur.ru/publications/3181

з.Панов, С. А. Вычислительные машины, системы и сети: Методические указания по выполнению самостоятельных работ [Электронный ресурс] / Панов С. А. — Томск: ТУСУР, 2015. — 5 с. — Режим доступа: https://edu.tusur.ru/publications/5005

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно-справочные, поисковые системы и требуемое программное обеспечение

1. Информационно-справочные и поисковые системы сетиИнтернет.

12.4 Лицензионное программное обеспечение

Математический пакет Mathcad, математический пакет MatLab

Internet-ресурсы:

http://poiskknig.ru – электронная библиотека учебников Mex-Mata MГУ, Москва.

http://www.mathnet.ru.ru/ - общероссийский математический портал.

http://www.lib.mexmat.ru — электронная библиотека механико-математического факультета Московского государственного университета.

http://onlinelibrary.wiley.com - научные журналы издательства Wiley&Sons.

http://www.sciencedirect.com/ - научные журналы издательства Elsevier.

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для практических занятий

Для проведения практических занятий используется учебно-исследовательская вычислительная лаборатория, расположенная по адресу 634034, Томская область, г. Томск, Вершинина улица, д. 74, 4 этаж, ауд. 437, 438, 439. Состав оборудования: Учебная мебель; Экран с электроприводом DRAPER BARONET -1 шт.; Мультимедийный проектор TOSHIBA -1 шт.; Компьютеры класса не ниже Intel Pentium G3220 (3.0GHz/4Mb)/4GB RAM/ 500GB с широкополосным доступом в Internet, с мониторами типа Samsung 18.5" S19C200N-10 шт.; Используется лицензионное программное обеспечение, пакеты версией не ниже: Microsoft Windows XP Professional with SP3; Visual Studio 2008 EE with SP1; Microsoft Office Visio 2010; Microsoft SQL-Server 2005; Matlab v6.5.

13.1,2. Материально-техническое обеспечение для самостоятельной работы

Для самостоятельной работы используется учебная аудитория (компьютерный класс), расположенная по адресу 634034, г. Томск, ул. Вершинина, 74, 1 этаж, ауд. 100. Состав оборудования: учебная мебель; компьютеры класса не ниже ПЭВМ INTEL Celeron D336 2.8ГГц. - 4 шт.; компьютеры подключены к сети ИНТЕРНЕТ и обеспечивают доступ в электронную информационнообразовательную среду университета.

13.2. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с ОВЗ осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема/передачи

14. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

14.1. Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе.

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с инвалидностью предусмотрены дополнительные оценочные средства, перечень которых указан в таблице 15.1.

Таблица 15.1 – Дополнительные средства оценивания для студентов с инвалидностью

	· • • • • • • • • • • • • • • • • • • •	·
Категории студентов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.2 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностямиздоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услугассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

	УТВЕРЖДАЮ Проректор по учебной работе	
		П. Е. Троян
	«»	2017 г.
ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБ «РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛИТЕЛЬ	, , ,	
Уровень основной образовательной программы: бакалавриа:	Γ	
Направление(я) подготовки (специальность): _09.03.01 Информ	атика и вычислителы	ная техника
Профиль: <u>Программное обеспечение средств вычисли автоматизированных систем</u>	тельной техники	И
Форма обучения:		
Факультет: ЗиВФ, Заочный и вечерний факультет		
Кафедра: АСУ, Кафедра автоматизированных систем управ	вления	
Курс: _4 Семестр:8		
Учебный план набора 2012 года.		

Зачет 8 семестр

Томск 2017

1. ВВЕДЕНИЕ

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины «Распределенные вычислительные системы» и представляет собой совокупность контрольноизмерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения.

ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной «Распределенные вычислительные системы» компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции
ОПК-2	Способность осваивать методики использования программных средств для решения практических задач	Знать: — методы разработки и применения теории программирования; — способы создания и сопровождения программных средств различного назначения;
		Уметь: — исследовать распределенные и параллельные системы программирования; — программировать системы виртуальной реальности и мультимедийного общения; — записывать модели и методы создания программ и программных систем для распределенной обработки данных; Владеть: — Владеть способностью самостоятельно приобретать с помощью информационных технологий — использовать в практической деятельности новые знания и умения в области;
ОПК-4	Способность участвовать в настройке и наладке программно-аппаратных комплексов	Знать: - методы и способы повышения эффективности и надежности процессов обработки - передачи данных и знаний в вычислительных машинах, комплексах и компьютерных сетях. Уметь: - пользоваться языками и инструментальными средствами распределенного и параллельного программирования; - организовать глобально распределенную обработку данных; Владеть: - навыками программирования в области распределенных и параллельных технологий; - навыками программирования на языках высокого уровня, а также работы в математических пакетах Matlab, MathCAD.

2. РЕАЛИЗАЦИЯ КОМПЕТЕНЦИЙ

2.1 Компетенции ОПК-2

ОПК-2: Способность осваивать методики использования программных средств для решения практических задач.

Для формирования компетенций необходимо осуществить ряд этапов. Этапы формирования компетенций, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	генции и используемые средства ог Уметь	Владеть
Содержание этапов	методики использования программных средств для решения практических задач распределенных вычислительных систем (ОПК2); настраивать и налаживать программно-аппаратных комплексы распределенных вычислительных систем (ОПК2);	читать и составлять документы математического анализа проблем распределенных вычислительных систем (статьи, доклады, отчеты) (ОПК2), теории вероятности и математической статистики; использовать основы математических знаний при разработке методик (ОПК2), использовать современные информационнокоммуникационных технологии и программные средства для решения математических задач распределенных вычислительных систем (ОПК2);	методами, приемами и способами использования основ математических знаний в решении задач распределенных вычислительных систем (ОПК2), настраивать программно-аппаратные комплексы для решения практических задач (ОПК2),
Виды занятий	Практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС
Используемы е средства оценивания	Тест;Контрольная работа;Реферат;зачетКурсовая работа	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы; зачет Курсовая работа 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО	Обладает	Обладает диапазоном	Контролирует работу,

(высокий уровень)	фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	практических умений, требуемых для развития творческих решений, абстрагирования проблем	проводит оценку, совершенствует действия работы
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уровнем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	- Знает, с какими математическими знаниями связана постановка задач распределенных вычислительных систем (ОПК2); - Знает, в чем заключаются отличия основных методов распределенных вычислительных систем (ОПК2); - Понимает важную роль стандартизации правил распределенных вычислительных систем (ОПК2);	- Умеет читать и составлять документы любой математической сложности (ОПК2); - Умеет использовать основы математических знаний (ОПК2); - Умеет использовать современные информационнокоммуникационных технологии для решения задач распределенных вычислительных систем (ОПК2);	- Владеет методами, приемами и способами основы математических знаний в области распределенных вычислительных систем (ОПК2); - Способен читать и понимать математическую литературу распределенных вычислительных систем (ОПК2);
ХОРОШО (базовый уровень)	 Знает, какими основными математическими знаниями, законами и методическими указаниями регламентируются методы 	— Умеет читать и составлять основные документы распределенных вычислительных систем (ОПК2);	- Владеет методами, приемами и способами распределенных вычислительных систем (ОПК2);

			10
	распределенных вычислительных систем (ОПК2); — Понимает важную роль стандартизации правил распределенных вычислительных систем (ОПК2);	— Умеет использовать современные информационно-коммуникационных технологии для поиска решений в области распределенных вычислительных систем (ОПК2);	- Способен понимать содержание отчетности в области распределенных вычислительных систем (ОПК2);
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	 Имеет представление о нормативной регламентации правил распределенных вычислительных систем; Понимает важную роль стандартизации методов в области распределенных вычислительных систем 	- Умеет использовать современные информационно-коммуникационных технологии для решения основных задач распределенных вычислительных систем	- Владеет основами метода распределенных вычислительных систем (ОПК2);

2.2 Компетенции ОПК-4

ОПК-4: Способность участвовать в настройке и наладке программно-аппаратных комплексов.

Для формирования компетенций необходимо осуществить ряд этапов. Этапы формирования компетенций, применяемые для этого виды занятий и используемые средства оценивания, представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов	основы математического анализа, теории вероятности, математической статистики (ОПК4), основы системного и прикладного программирования и методологические правила ведения математических расчетов согласно элементам предметной области распределенных вычислительных систем (ОПК4).	составлять отчетные документы по результатам решения поставленной задачи с помощью вычислительных средств (ОПК4), интерпретировать результаты обработки экспериментальных данных и делать научные выводы в направлении распределенных вычислительных систем (ОПК4).	составлением информационных и имитационных моделей, основами работы в творческом коллективе (ОПК4).
Виды занятий	Практические занятия, групповые консультации	Практические занятия, выполнение домашнего задания, СРС	Практические занятия, СРС

Используемы е средства оценивания	Тест;Контрольная работа;Реферат;зачетКурсовая работа	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы; зачет 	 Проверка правильности выполнения практических заданий; Контрольная работа; Конспект самостоятельной работы
		Курсовая работа	

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 – Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	Обладает фактическими и теоретическими знаниями в пределах изучаемой области с пониманием границ применимости	Обладает диапазоном практических умений, требуемых для развития творческих решений, абстрагирования проблем	Контролирует работу, проводит оценку, совершенствует действия работы
ХОРОШО (базовый уровень)	Знает факты, принципы, процессы, общие понятия в пределах изучаемой области	Обладает диапазоном практических умений, требуемых для решения определенных проблем в области исследования	Берет ответственность за завершение задач в исследовании, приспосабливает свое поведение к обстоятельствам в решении проблем
УДОВЛЕТВОРИТЕЛЬНО (низкий уровень)	Обладает низким уровнем общих знаний	Обладает умениями на низком уровне, которые не достаточны для выполнения даже простых задач	Работает только при прямом наблюдении

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 5 – Показатели и критерии оценивания компетенции на этапах

Показатели и критерии	Знать	Уметь	Владеть
ОТЛИЧНО (высокий уровень)	 Глубоко понимает основы математических знаний, методологию постановки задач распределенных вычислительных систем (ОПК4); Знает формы 	 Умеет составлять и анализировать программное обеспечение в области распределенных вычислительных систем (ОПК4); Умеет формировать 	— Владеет математическими методами связи основ предметной области и распределенных вычислительных систем (ОПК4).

	представления результатов измерений в распределенных вычислительных систем (ОПК4).	отчеты в области распределенных вычислительных систем (ОПК4).	
ХОРОШО (базовый уровень)	 Понимает методологию распределенных вычислительных систем (ОПК4); Знает, какие существуют формы и методы распределенных вычислительных систем (ОПК4). 	 Умеет составлять программный код в области распределенных вычислительных систем (ОПК4); Умеет формировать отчетность в области распределенных вычислительных систем (ОПК4). 	- Владеет некоторыми методами основ математических знаний, элементами распределенных вычислительных систем (ОПК4).
УДОВЛЕТВО- РИТЕЛЬНО (низкий уровень)	— Понимает методологию ведения распределенных вычислительных систем (ОПК4).	— Имеет представление о методах распределенных вычислительных систем (ОПК4).	- Способен понимать назначение распределенных вычислительных систем, знает состав математических подходов в области распределенных вычислительных систем (ОПК4).

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе, приведенном ниже.

3.1 Темы практических занятий

Раздел 1. Основные определения и понятие фон-неймановской архитектуры, ее узкие места и способы их устранения. Классификация вычислительных систем (ВС с пакетным режимом обработки данных, ВС коллективного пользования, ВС реального времени. ВС, использующие параллелизм данных. Принцип скалярной и векторной обработки, ВС на основе векторных и матричных процессоров, ВС на основе ассоциативных процессоров). Архитектуры компьютеров на схемах малой интеграции (однопроцессорные, векторно-конвейерные, параллельные системы класса SIMD); Архитектуры массово параллельных компьютеров на БИС, СБИС и гипербольших ИС (системы с распределенной разделяемой реконфигурируемые однокристальные системы, процессоры); Традиционные многопроцессорные модели распараллеливания (статическое и динамическое распараллеливание, архитектура суперскалярных процессоров и организация динамического распараллеливания, работа с памятью); Мультитредовые модели распараллеливания (мультитредовые процессоры с тредами, выявляемыми путем анализа потоков управления и потоков данных программ; модель выполнения мультитредовых программ и ее специфика; аппаратные средства для мультитредовой архитектуры).

Раздел 2. <u>Топологии коммутационных сетей многопроцессорных ВС (МВС):</u> шинные, матричные и кубические структуры (гиперкуб, омега, баттерфляй, flip); Коммуникационные среды масштабируемых ВС, шины интерфейса ввода-вывода микропроцессора, особенности применения каналов ввода-вывода. Высокопроизводительные универсальные КС на основе масштабируемого

когерентного интерфейса SCI (основные характеристики, логическая структура и архитектура, ¹⁹ когерентность кэш-памятей); КС MYRINET (основные характеристики, адаптер «шина компьютера – линк сети», коммутаторы логический уровень протокола сети Myrinet, физическая реализация и ПО); КС транспьютеров (технология, передача данных системах фирмы Inmos, КС на базе микропроцессора TMS 320 C4х и КС на базе ADSP 2106X).

Раздел 3. <u>Простые коммутаторы</u> (с временным и пространственным разделением), <u>составные коммутаторы</u> Клоза и баньян-сети, распределенные составные коммутаторы (критерии выбора графов межмодульных связей, графы с минимальным диаметром, симметричные графы, кубические графы), графы с заданными гомоморфизмами, управление коммутаторами, составной коммутатор системы МВС 1000. Процессы и критические секции (программные средства порождения/уничтожения процессов fork и join, синхронизация процессов); реализация взаимного исключения, синхронизирующие примитивы, синхронизация процессов посредством семафоров, мониторы, дедлоки и защита от них

Раздел 4. Классификация архитектур ВС. Проблема когерентности памяти ВС. Механизмы неявной реализации когерентности (аппаратно-программные реализации механизмов когерентности, однопроцессорный и многопроцессорный подходы). Аппаратный уровень разделяемой памяти (архитектуры систем с разделяемой памятью, симметричные мультипроцессоры с сосредоточенной памятью, системы с архитектурой NUMA и COMA, системы с рефлексивной памятью). Программный уровень реализации разделяемой памяти. Механизм явной реализации когерентности. Развитие параллельного программирования. Организация эффективных параллельных вычислений. Проблемы организации параллельных вычислений. Параллельное программирование с использованием интерфейса передачи сообщений MPI. Стандарт Open MP. Примеры программирования. Стандарт PVM. Системы программирования DVM, mpC, Linda. Классические задачи «распределенного» программирования и программирования с «разделяемыми переменными». Прикладные задачи «синхронного параллельного программирования. Пути совершенствования систем внешней памяти. Типы устройств хранения данных. Дисковые системы (RAID-массивы, технология дискового кэширования). Подходы к реализации систем хранения данных.

<u>Раздел 5. Отказоустойчивые системы</u>. Различные модели отказоустойчивых систем (горячий резерв, репликация, параллельный сервер базы данных, МРР система). Информационные системы высокой готовности. Отказоустойчивые системы на базе стандартных компонентов. Способы оценки производительности ВС (пиковая и реальная производительность, способы измерения реальной производительности). Тест Linpack. Пакеты тестовых программ SPEC и TPC. Тесты коммуникационной среды.

Раздел 6. Основные классы параллельных систем, универсальные ВС с фиксированной и программируемой структурой, специализированные ВС с программируемой структурой (однородные ВС, программируемые RAW-микропроцессоры, ассоциативный процессор). Нейросетевые ВС. Многопроцессорные серверы (кластеры DIGITAL TruCluster). Суперкомпьютеры Cray T3E-900, Cray T3E-1200. ВС из компонентов высокой готовности (Beowulf, Avalon). Проект суперкомпьютера Blue Gene фирмы IBM. Архитектура и организация параллельных вычислений в МВС-100, организация передачи сообщений, реализация и инициация процесса ROUTER. Архитектура МВС-1000/200 и его ПО, организация безопасного удаленного доступа и система планирования запуска заданий; Архитектура и ПО суперкомпьютера МВС-1000М. Развитие системного ПО параллельных суперкомпьютеров и сетевые вычисления на базе технологий GRID

3.2 Домашнее индивидуальное задание

- 1. Составить словарь терминов и определений направления «распределенных вычислительных систем»
- 2. Составить список основных алгоритмов направления «распределенных вычислительных систем»
- 3. Составить список программного обеспечения в области направления «распределенных вычислительных систем»
 - 4. Что такое «распределенных вычислительных систем»? Модель, план, анализ.

- 5. Какие устройства включены в «распределенных вычислительных систем». Модель, план, анализ.
 - 6. Какие научные направления позволяют управлять «распределенных вычислительных систем».

3.3 Темы для самостоятельной работы (темы рефератов)

- 1) Понятия и принципы теории «распределенных вычислительных систем».
- 2) Задачи планирования и обработки экспериментов для «распределенных вычислительных систем».
- 3) Понятие управления в области «распределенных вычислительных систем».
- 4) Космические «распределенных вычислительных систем».
- 5) Эвристическое построение оптимального «распределенных вычислительных систем».
- 6) Методы планирования в области «распределенных вычислительных систем».

3.4 Вопросы и задачи для подготовки к зачету (для студентов, которые не выполнили все задания в семестре)

- 1. Программный уровень реализации разделяемой памяти. Механизм явной реализации когерентности. Параллельное программирование для MPP систем:
- 2. Развитие параллельного программирования. Организация эффективных параллельных вычислений. Проблемы организации параллельных вычислений.
- 3. Параллельное программирование с использованием интерфейса передачи сообщений MPI.
- 4. Стандарт Ореп МР. Примеры программирования.
- 5. Стандарт PVM.
- 6. Система программирования DVM,
- 7. Система программирования mpC.
- 8. Система программирования Linda.
- 9. Классические задачи «распределенного» программирования и программирования с «разделяемыми переменными».
- 10. Прикладные задачи «синхронного параллельного программирования.
- 11. Организация внешней памяти:
- 12. Пути совершенствования систем внешней памяти. Типы устройств хранения данных.
- 13. Дисковые системы (RAID-массивы, технология дискового кэширования). Подходы к реализации систем хранения данных. Готовность систем хранения данных.

Надежность параллельных систем:

- 14. Отказоустойчивые системы. Различные модели отказоустойчивых систем (горячий резерв, репликация, параллельный сервер базы данных, МРР система).
- 15. Информационные системы высокой готовности. Отказоустойчивые системы на базе стандартных компонентов.

Оценка производительности ВС:

- 16. Способы оценки производительности ВС (пиковая и реальная производительность, способы измерения реальной производительности).
- 17. Тест Linpack. Пакеты тестовых программ SPEC и TPC.
- 18. Тесты коммуникационной среды пакет РМВ 2.2.

Кластеры и массово параллельные системы (МРР):

- 19. Основные классы параллельных систем, универсальные ВС с фиксированной и программируемой структурой.
- 20. Специализированные ВС с программируемой структурой (однородные ВС, программируемые raw-микропроцессоры, ассоциативный процессор).
- 21. Нейросетевые ВС.
- 22. Многопроцессорные серверы (кластеры DIGITAL TruCluster).
- 23. Суперкомпьютеры Cray T3E-900, Cray T3E-1200. ВС из компонентов высокой готовности (Beowulf, Avalon).
- 24. Проект суперкомпьютера Blue Gene фирмы IBM.
- 25. Российские суперкомпьютеры МВС-100 и МВС-1000:

- 26. Архитектура и организация параллельных вычислений в MBC-100, организация передачи 21 сообщений, реализация и инициация процесса ROUTER.
- 27. Архитектура МВС-1000/200 и его ПО, организация безопасного удаленного доступа и система планирования запуска заданий.
- 28. Архитектура и ПО суперкомпьютера МВС-1000М.
- 29. Развитие системного ПО параллельных суперкомпьютеров

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе:

1. Панов, С. А. Вычислительные машины, системы и сети: Курс лекций [Электронный ресурс] / Панов С. А. — Томск: ТУСУР, 2015. — 81 с. — Режим доступа: https://edu.tusur.ru/publications/5002.

Учебно-методическое пособие по самостоятельной работе студентов

- Боровской, И. Г. Проблемно-ориентированные вычислительные системы: Методические указания по выполнению практических работ и заданий самостоятельной подготовки Іля специальностей: 230100 - «Информатика и вычислительная техника», 230400 - «Информационные системы и технологии» [Электронный ресурс] / Боровской И. Г. — Томск: ТУСУР, 2014. — 59 с. — Режим доступа: https://edu.tusur.ru/publications/3937
- Замятин, Н. В. Вычислительные системы: Методические указания для направление подготовки магистров 230100.68 «Информатика и вычислительная техника» [Электронный ресурс] / Замятин Н. В. — Томск: ТУСУР, 2012. — 11 с. — Режим доступа: https://edu.tusur.ru/publications/3181.
- Панов, С. А. Вычислительные машины, системы и сети: Методические указания по выполнению самостоятельных работ [Электронный ресурс] / Панов С. А. — Томск: ТУСУР, 2015. — 5 с. — Режим доступа: https://edu.tusur.ru/publications/5005.