МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ: Проректор по учебной работе

Документ подписан электронной подписью

Сертификат: 1c6cfa0a-52a6-4f49-aef0-5584d3fd4820

Владелец: Троян Павел Ефимович

Действителен: с 19.01.2016 по 16.09.2019

16 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Уровень основной образовательной программы бакалавриат

Направление(я) подготовки (специальность) 11.03.02 «Инфокоммуникационные технологии и системы связи»

Профиль(и) «Системы мобильной связи»

Форма обучения очная

Факультет РТФ (радиотехнический факультет)

Кафедра РТС (радиотехнических систем)

Курс 1

Семестр 2

Учебный план набора 2013, 2014, 2015 года.

Распределение рабочего времени:

Nº	Виды учебной работы	Семестр 1	Семестр 2	Семестр 3	Семестр 4	Семестр 5	Семестр 6	Семестр 7	Семестр 8	Всего	Единицы
1	Лекции		36							36	часов
2	Лабораторные работы										часов
3	Практические занятия		64							64	часов
4	Курсовой проект/работа (КРС) (аудиторная)										часов
5	Всего аудиторных занятий (Сумма 1-4)		100							100	часов
6	Из них в интерактивной форме										часов
7	Самостоятельная работа студентов (СРС)		80							80	часов
8	Всего (без экзамена) (Сумма 5,7)		180							180	часов
9	Самост. работа на подготовку, сдачу экзамена		36							36	часов
10	Общая трудоемкость (Сумма 8,9)		216							216	часов
	(в зачетных единицах)		6							6	ЗЕТ

Зачет не предусмотрено

Диф. зачет не предусмотрено

Экзамен 2 семестр

Томск 2016

Рассмотрена и одобрена на заседании кафедры протокол № 289 от «23 » 1 2017 г.

Лист согласований

Рабочая программа составлена с учетом требований Федерального Государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки (специальности) 11.03.02 «Инфокоммуникационные технологии и системы связи» утвержденного приказом министерства образования и науки РФ 06.03..2015г., №174

рассмотрена и утверждена на заседании кафедры 23 января 2017 г., протокол № <u>289</u>. Разработчик: зав. кафедрой математики _________А.Л. Магазинникова Рабочая программа согласована с факультетом, профилирующей и выпускающей кафедрами направления подготовки (специальности). Декан РТФ К.Ю.Попова Зав. профилирующей кафедрой РТС С.В. Мелихов Зав. выпускающей кафедрой РТС С.В. Мелихов Эксперты: профессор кафедры математики ТУСУР А.А Ельцов ст. преподаватель кафедры

Д.О. Ноздреватых

РТС ТУСУР

- 1. Цели и задачи дисциплины: целью курса является изучение основ математического анализа; методов, способов и средств получения, хранения, переработки математической информации, принятых в математическом анализе, включая методы решения задач математического анализа. В задачи курса входят: овладение методами, способами и средствами получения, хранения, переработки математической информации, принятыми в математическом анализе; методами исследования математических задач, развитие логического и алгоритмического мышления студентов, выработка у студентов способности к самоорганизации и самообразованию, в частности, умения работать с математической литературой.
- 2. Место дисциплины в структуре ОПОП: математический анализ относится к базовой части дисциплин Б1.Б.10. Для изучения курса необходимо твердое знание студентами базового курса математики средней школы, а также курса линейной алгебры и аналитической геометрии. Математический анализ призван дать студентам математический аппарат, который будет использоваться в дальнейшем при изучении дисциплин профессионального цикла, в учебноисследовательской и научно-исследовательской работе.

3. Требования к результатам освоения дисциплины:

процесс изучения дисциплины направлен на формирование следующих компетенций: ОК-7 - «Выпускник должен обладать способностью к самоорганизации и самообразованию» ОПК-3 - «Выпускник должен обладать способностью владеть основными методами, способами и средствами получения, хранения, переработки информации»

В результате изучения дисциплины студент должен:

знать: основные понятия математического анализа; методы, способы и средства получения, хранения, переработки математической информации, принятые в математическом анализе, включая методы решения типовых задач математического анализа.

уметь: применять методы, способы и средства получения, хранения, переработки математической информации, принятые в математическом анализе, для решения типовых задач, для освоения других дисциплин, предусмотренных учебным планом, и решения профессиональных задач. Пользоваться при необходимости математической литературой.

владеть: методами, способами и средствами получения, хранения, переработки математической информации, принятыми в математическом анализе, включая основные методы решения типовых задач; навыками самоорганизации и самообразования для изучения вопросов, касающихся математического анализа.

4. Объем дисциплины и виды учебной работы Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы	D		Ce	местры	
	Всего часов	1	2	3	
Аудиторные занятия (всего)	100		100		
В том числе:	-		-	-	-
Лекции	36		36		
Лабораторные работы (ЛР)					
Практические занятия (ПЗ)	54		54		
Семинары (С)					
Коллоквиумы (К)	2		2		
Курсовой проект/(работа) (аудиторная нагрузка)					
Другие виды аудиторной работы					
Контрольные работы	8		8		
Самостоятельная работа (всего)	80		80		
В том числе:	-		-	-	-
Курсовой проект (работа) (самостоятельная работа)					
Расчетно-графические работы					
Реферат					
Другие виды самостоятельной работы					
Подготовка к практическим занятиям	54		54		
Подготовка к контрольным работам	16		16		
Подготовка к коллоквиуму	10		10		
Вид промежуточной аттестации -экзамен	36		36		
Общая трудоемкость час	216		216		
Зачетные Единицы Трудоемкости	6		6		

5. Содержание дисциплины

5.1. Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины	Лекции	Лаборат. занятия	Практич. занятия	Курсовой П/Р (KPC)	Самост. работа студента	Всего час. (без экзам)	Формируе- мые компе- тенции (ОК, ПК)
1.	Введение в анализ (включая функции комплекс-			20		24	54	ОК-7,
	ного переменного).							ОПК-3
2.	Дифференциальное исчисление (включая функ-	10		20		24	54	ОК-7,
	ции комплексного переменного).							ОПК-3
3.	Интегральное исчисление функций одной и мно-			24		32	72	ОК-7,
	гих переменных (включая функции комплексного							ОПК-3
	переменного). Элементы теории поля.							
	ВСЕГО	36		64		80	180	

5.2. Содержание разделов дисциплины (по лекциям)

№ п/п	Наименование разделов	Содержание разделов	Трудоем- кость (час.)	Формируе- мые компе- тенции (ОК, ПК)
1.	Введение в анализ (включая функции комплексного переменного).	Понятие функции, включая функции комплексной переменной, способы задания функции, Композиция функций, обратная функция. Последовательность и ее предел. Непрерывность функции. Предел функции. Неопределенные выражения. Классификация точек разрыва. Бесконечно малые и бесконечно большие функции и их свойства. Сравнение бесконечно малых, порядок малости. Главная часть бесконечно малой. Сравнение бесконечно больших функций, порядок роста. Главная часть бесконечно большой.	10	ОК-7, ОПК-3
2.	Дифференци- альное исчисле- ние (включая функции ком- плексного пе- ременного).	Понятие дифференцируемой функции. Дифференциал функции. Инвариантность формы дифференциала первого порядка. Производная матрица и ее строение. Понятие частной производной. Производная по направлению. Градиент. Условия дифференцируемости функции. Производные и дифференциалы высших порядков. Формула Тейлора. Приложения дифференциала в приближенных вычислениях. Правило Лопиталя. Геометрический и механический смысл производной. Исследование функции.	10	ОК-7, ОПК-3
3.	Интегральное исчисление функций одной и многих переменных (включая функции комплексного переменного). Элементы теории поля.	Неопределённый интеграл и его свойства. Методы интегрирования: подведение под знак дифференциала, интегрирование по частям, интегрирование рациональных дробей. Определённый интеграл и его свойства. Приложения определенного интеграла. Понятие интеграла по фигуре (многообразию). Криволинейные интегралы I и II рода. Их физический смысл, свойства и вычисление. Независимость криволинейного интеграла II рода от пути интегрирования. Потенциальное векторное поле. Интеграл функции комплексной переменной. Двойной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в двойном интеграле, переход к полярной системе координат. Поверхностные интегралы I и II рода. Их физический смысл, свойства и вычисление. Тройной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в тройном интеграле, переход к цилиндрической или сферической системе координат. Поток и дивергенция векторного поля. Формула Остроградского-Гаусса. Циркуляция и ротор векторного поля. Формула Стокса.	16	ОК-7, ОПК-3

5.3. Разделы дисциплины и междисциплинарные связи с обеспечивающими (предыдущими) и обеспечиваемыми (последующими) дисциплинами

№ № разделов данной дисциплины из табл.5.1. для которых необходимо Наименование обеспечивающих No (предыдущих) и обеспечиваемых Π/Π изучение обеспечивающих (предыдущих) и обеспечиваемых (последую-(последующих) дисциплин щих) дисциплин 2 Предшествующие дисциплины Линейная алгебра и аналитическая + + + геометрия. Последующие дисциплины Основы функционального анализа 1 + + Дискретная математика + + Теория вероятностей и математиче-+ ская статистика 4 Физика + + + Информационные технологии 5 + + + Инженерная и компьютерная гра-+ 7 Теория электрических цепей + + + Метрология, стандартизация и сер-+ + + тификация в инфокоммуникациях Электроника + 10 Схемотехника телекоммуникационных устройств 11 Радиоавтоматика + + Цифровая обработка сигналов 12 + + + 13 Радиотехнические системы + + + 14 Электромагнитные поля и волны + + 15 Математические методы описания + + + сигналов 16 Теоретические основы систем мо-+ + + бильной связи 17 Схемотехника телекоммуникационных устройств Распространение радиоволн и ан-18 тенно- фидерные устройства систем мобильной связи Устройства преобразования и обработки информации систем мобильной связи 20 Сети и системы мобильной связи + + + 21 Прикладные математические методы в радиотехнике 22 Математическое моделирование устройств связи

5.4. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Перечень ком-	Виды занятий					Формы контроля
петенций	Л	Лаб	Пр.	КР/КП	CPC	
ОК-7, ОПК-3	+		+		+	Опрос на лекции, на практическом занятии. Коллоквиум. Контрольная работа. Экзамен.

 $[\]Pi$ – лекция, Π р – практические и семинарские занятия, Π аб – лабораторные работы, $KP/K\Pi$ – курсовая работа/проект, CPC – самостоятельная работа студента

6. Методы и формы организации обучения Технологии интерактивного обучения при разных формах занятий в часах не предусмотрено

7. Лабораторный практикум не предусмотрено

8. Практические занятия (семинары)

№	№ раздела дис-	Тематика практических занятий (семинаров)	Трудо-	Компе-
Π/Π	циплины из		емкость	тенции
	табл. 5.1		(час.)	ОК, ПК
1	1	Понятие функции, включая функции комплексной переменной, способы задания функции, Композиция функций, обратная функция. Последовательность и ее предел. Непрерывность функции. Предел функции. Неопределенные выражения. Классификация точек разрыва. Бесконечно малые и бесконечно большие функции и их свойства. Сравнение бесконечно малых, порядок малости. Главная часть бесконечно малой. Сравнение бесконечно больших функций, порядок роста. Главная часть бесконечно большой.	20	ОК-7, ОПК-3
2	2	Понятие дифференцируемой функции. Дифференциал функции. Инвариантность формы дифференциала первого порядка. Производная матрица и ее строение. Понятие частной производной. Производная по направлению. Градиент. Условия дифференцируемости функции. Производные и дифференциалы высших порядков. Формула Тейлора. Приложения дифференциала в приближенных вычислениях. Правило Лопиталя.	20	ОК-7, ОПК-3
3	3	Неопределённый интеграл и его свойства. Методы интегрирования: подведение под знак дифференциала, интегрирование по частям, интегрирование рациональных дробей. Определённый интеграл и его свойства. Приложения определенного интеграла. Понятие интеграла по фигуре (многообразию). Криволинейные интегралы I и II рода. Их физический смысл, свойства и вычисление. Независимость криволинейного интеграла II рода от пути интегрирования. Потенциальное векторное поле. Интеграл функции комплексной переменной. Двойной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в двойном интеграле, переход к полярной системе координат. Поверхностные интегралы I и II рода. Их физический смысл, свойства и вычисление. Тройной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в тройном интеграле, переход к цилиндрической или сферической системе координат. Поток и дивергенция векторного поля. Формула Остроградского-Гаусса. Циркуляция и ротор векторного поля. Формула Стокса.	24	ОК-7, ОПК-3

9. Самостоятельная работа

№ п/п	№ раздела дисци- плины из табл. 5.1	Тематика самостоятельной работы (детализация)	Трудо-	Компе-	Контроль выполнения
1	1	Изучение теоретического материала, решение задач. Подготовка к практическим занятиям. Подготовка к контрольной работе. Темы: Понятие функции, включая функции комплексной переменной, способы задания функции. Композиция функций, обратная функция. Последовательность и ее предел. Непрерывность функции. Предел функции. Неопределенные выражения. Классификация точек разрыва. Бесконечно малые и бесконечно большие функции. Сравнение бесконечно малых, порядок малости. Главная часть бесконечно малой. Сравнение бесконечно больших функций, порядок роста. Главная часть бесконечно большой.	(час.) 24	ОК, ПК ОК-7, ОПК-3	работы Опрос на лекции, прак- тическом занятии. Коллоквиум. Контрольная работа. Экза- мен.
2	2	Изучение теоретического материала, решение задач. Подготовка к практическим занятиям. Подготовка к контрольной работе. Темы: Понятие дифференцируемой функции. Дифференциал функции. Производная матрица и ее строение. Понятие частной производной. Производная по направлению. Градиент. Производные и дифференциалы высших порядков. Формула Тейлора. Приложения дифференциала в приближенных вычислениях. Правило Лопиталя. Полное исследование функции.	24	ОК-7, ОПК-3	Опрос на лекции, практическом занятии. Коллоквиум. Контрольная работа. Индивидуальное задание. Экзамен.
3	3	Изучение теоретического материала, решение задач. Подготовка к практическим занятиям. Подготовка к контрольной работе. Темы: Неопределённый интеграл и его свойства. Методы интегрирования: подведение под знак дифференциала, интегрирование по частям, интегрирование рациональных дробей. Определённый интеграл и его свойства. Приложения определенного интеграла. Понятие интеграла по фигуре (многообразию). Криволинейные интегралы I и II рода. Их физический смысл, свойства и вычисление. Независимость криволинейного интеграла II рода от пути интегрирования. Потенциальное векторное поле. Интеграл функции комплексной переменной. Двойной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в двойном интеграле, переход к полярной системе координат. Поверхностные интегралы I и II рода. Их физический смысл, свойства и вычисление. Тройной интеграл и его свойства. Вычисление интеграла в декартовых координатах. Замена переменных в тройном интеграле, переход к цилиндрической или сферической системе координат. Поток и дивергенция векторного поля. Формула Остроградского-Гаусса. Циркуляция и ротор векторного поля. Формула Стокса.	32	ОК-7, ОПК-3	Опрос на лекции, практическом занятии. Коллоквиум. Контрольная работа. Индивидуальное задание. Экзамен.

10. Примерная тематика курсовых проектов (работ) не предусмотрено

11. Рейтинговая система для оценки успеваемости студентов

Таблица 11.1 Балльные оценки для элементов контроля.

	Максимальный	Максимальный	Максимальный	Всего за
	балл на 1 к.т.	балл между 1 и	балл между	семестр
		2 к.т.	2 -й к.т. и на	
			конец семестра	
Контрольные работы, тесты.	10	15	15	40
Индивидуальное задание			10	10
Коллоквиум.	5	5		10
Работа на практических заня-			10	10
тиях				
Итого максимум за период:	15	27	28	70
Сдача экзамена (максимум)				30
Нарастающим итогом:	15	42	70	100

Таблица 11.2 Пересчет баллов в оценки за контрольные точки

Баллы на дату контрольной точки	Оценка
≥ 90 % от максимальной суммы баллов на дату КТ	5
От 70% до 89% от максимальной суммы баллов на дату КТ	4
От 50% до 69% от максимальной суммы баллов на дату КТ	3
< 50 % от максимальной суммы баллов на дату КТ	2

Таблица 11.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка (ГОС)	Итоговая сумма баллов, учитывает успешно сданный экзамен	Оценка (ECTS)
5 (отлично) (зачтено)	90 - 100	А (отлично)
4 (222222)	85 – 89	В (очень хорошо)
4 (хорошо) (зачтено)	75 – 84	С (хорошо)
(зачтено)	70 - 74	D (удордотроритоди но)
3 (удовлетворительно)	65 – 69	D (удовлетворительно)
(зачтено)	50 - 64	Е (посредственно)
2 (неудовлетворительно),	Ниже 50 баллов	F (неудовлетворительно)
(не зачтено)		

12. Учебно-методическое и информационное обеспечение дисциплины:

12.1 Основная литература.

- 1. Магазинников Л. И. Дифференциальное исчисление [Электронный ресурс]: учебное пособие / Л. И. Магазинников, А. Л. Магазинников; Томский государственный университет систем управления и радиоэлектроники (Томск). Электрон. текстовые дан. Томск: [б. и.], 2007. on-line, 191 с. http://edu.tusur.ru/training/publications/2246
- 2. Ельцов А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263[1] с. Экземпляры всего:100.
- 3. Бермант А.Ф. Краткий курс математического анализа / И.Г Араманович, С-Петербург Изд-во: Лань, 2010. 736стр. http://e.lanbook.com/books/element.php?pl1_id=2660
- 4. Петрушко И.М. Курс высшей математики. Теория функций комплексной переменной. / Петрушко И.М., Елисеев А.Г. и др. С-Петербург Изд-во: Лань, 2010. 368 стр. http://lanbook.com/books/element.php?pl1_cid=45&pl1_id=526
- 5. Магазинников Л.И. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 212 с. (99 экз.)

12.2 Дополнительная литература.

- 1. Бугров Я.С. Высшая математика: учебник для вузов: В 3 т. / Я.С. Бугров, С.М. Никольский; ред. В.А. Садовничий. Т. 2: Дифференциальное и интегральное исчисление.- 7-е изд., стереотип. М.: Дрофа, 2005. 509[2] с. (31 экз.)
- 2. Ельцов А.А. Практикум по интегральному исчислению и дифференциальным уравнениям: учебное пособие / А.А. Ельцов, Т.А. Ельцова; Федеральное агентство по образованию (М.), Томский государственный университет систем управления и радиоэлектроники (Томск). Томск: ТУСУР, 2005. 204 с. (285 экз.)

12.3. Учебно-методические пособия

12.3.1 Обязательные учебно-методические пособия

Практические занятия проводятся по учебным пособиям:

- 1. Магазинников Л.И. Высшая математика І. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 212 с. Экземпляров в библиотеке ТУСУРа: 99.
- 2. Ельцов А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263[1] с. Экземпляры всего:100.
- 3. Петрушко И.М. Курс высшей математики. Теория функций комплексной переменной. / Петрушко И.М., Елисеев А.Г. и др. С-Петербург Изд-во: Лань, 2010. 368 стр. http://lanbook.com/books/element.php?pl1_cid=45&pl1_id=526

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

1. Магазинников Л.И. Высшая математика І. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники.

- Томск: ТУСУР, 2007. 212 с.(рекомендовано для самостоятельной работы) Экземпляров в библиотеке ТУСУРа: 99.
- 2. Ельцов А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263[1] с. Экземпляры всего:100.
- 3. Петрушко И.М. Курс высшей математики. Теория функций комплексной переменной. / Петрушко И.М., Елисеев А.Г. и др. С-Петербург Изд-во: Лань, 2010. 368 стр. (рекомендовано для самостоятельной работы)

http://lanbook.com/books/element.php?pl1 cid=45&pl1 id=526

12.3.2 Учебно-методические пособия для лиц с ограниченными возможностями здоровья

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

12.4. Базы данных, информационно справочные и поисковые системы:

Образовательный портал университета (https://edu.tusur.ru), электронный каталог библиотеки (http://e.lanbook.com) система дистанционного образования MOODLE (методические материалы: текстовые, аудио и видеофайлы, индивидуальные задания, тесты и т.д.)

Ссылки с сайта кафедры на математические ресурсы и он-лайн тренажёры.

13. Материально-техническое обеспечение дисциплины

13.1. Общие требования к материально-техническому обеспечению дисциплины

13.1.1. Материально-техническое обеспечение для лекционных занятий Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с количеством посадочных мест не менее 90, оборудованная доской, компьютером, проектором и стандартной учебной мебелью. Имеются наглядные пособия в виде презентаций по лекционным разделам дисциплины.

- **13.1.2.** Материально-техническое обеспечение для практических занятий Для проведения практических (семинарских) занятий используется учебная аудитория с количеством посадочных мест не менее 30, оборудованная доской, стандартной учебной мебелью. Для внедрения элементов электронного обучения необходимы минимум 1 компьютер на 2 студента, Mathcad, Octave или MatLAB.
- **13.1.3.** Материально-техническое обеспечение для самостоятельной работы Для самостоятельной работы используется учебная аудитория, с количеством посадочных мест не менее 30, оборудованная доской, стандартной учебной мебелью. Для внедрения элементов

электронного обучения необходимы минимум 1 компьютер на 2 студента, Mathcad, Octave или MatLAB.

13.2 Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения.

При обучении студентов **с нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями слуха, мобильной системы обучения для студентов с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При обучении студентов **с нарушениями зрениями** предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для удаленного просмотра.

При обучении студентов **с нарушениями опорно-двигательного аппарата** используются альтернативные устройства ввода информации и другие технические средства приема-передачи учебной информации в доступных формах для студентов с нарушениями опорно-двигательного аппарата, мобильной системы обучения для людей с инвалидностью.

14. Фонд оценочных средств

14.1 Основные требования к фонду оценочных средств и методические рекомендации

Фонд оценочных средств и типовые контрольные задания, используемые для оценки сформированности и освоения закрепленных за дисциплиной компетенций при проведении текущей, промежуточной аттестации по дисциплине приведен в приложении к рабочей программе

14.2 Требования к фонду оценочных средств для лиц с ограниченными возможностями здоровья

Для студентов с ограниченными возможностями здоровья предусмотрены дополнительные оценочные средства, перечень которых указан в таблице.

Категории студен- тов	Виды дополнительных оценочных средств	Формы контроля и оценки результатов обучения
С нарушениями слуха	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы	Преимущественно письменная проверка
С нарушениями зрения	Собеседование по вопросам к зачету, опрос по терминам	Преимущественно устная проверка (индивидуально)
С нарушениями опорно- двигательного аппарата	Решение дистанционных тестов, контрольные работы, письменные самостоятельные работы, вопросы к зачету	Преимущественно дистанционными методами
С ограничениями по общемедицинским показаниям	Тесты, письменные самостоятельные работы, вопросы к зачету, контрольные работы, устные ответы	Преимущественно проверка методами, исходя из состояния обучающегося на момент проверки

14.3 Методические рекомендации по оценочным средствам для лиц с ограниченными возможностями здоровья

Для студентов с OB3 предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Приложение к рабочей программе

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ						
Пј	popei	стор по учебной работе				
		П. Е. Троян				
«	>>>	2016 г.				

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Уровень основной обр	разовательной программы: бакалавриат
Направление подгото	вки 11.03.02 Инфокоммуникационные технологии и системы связи
Профили Системн	ы мобильной связи
Форма обучения: очна	Я
Факультет: Радиотехн	ический (РТФ)
Кафедра: радиотехнич	еских систем (РТС)
Kypc 1	Семестр 2
	Учебный план набора 2013, 2014, 2015 года.
Зачет: не предусмотрен	Диф. зачет не предусмотрен

Экзамен 2 семестр

1 Введение

Фонд оценочных средств (ФОС) является приложением к рабочей программе дисциплины и представляет собой совокупность контрольно-измерительных материалов (типовые задачи (задания), контрольные работы, тесты и др.) и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения. ФОС по дисциплине (практике) используется при проведении текущего контроля успеваемости и промежуточной аттестации студентов. Перечень закрепленных за дисциплиной компетенций приведен в таблице 1.

Таблица 1 – Перечень закрепленных за дисциплиной компетенций

Код	Формулировка компетенции	Этапы формирования компетенции	
OK-7	способность к самоорганизации и	Должен знать основные понятия математи-	
	самообразованию	ческого анализа; методы, способы и средства	
		получения, хранения, переработки математиче-	
ОПК-3	способность владеть основ-	ской информации, принятые в математическом	
	ными методами, способами и	анализе, включая методы решения типовых за-	
	средствами получения, хранения,	дач математического анализа.	
	переработки информации	Должен уметь применять методы, способы и	
		средства получения, хранения, переработки ма-	
		тематической информации, принятые в матема-	
		тическом анализе, для решения типовых задач,	
		для освоения других дисциплин, предусмотрен-	
		ных учебным планом, и решения профессио-	
		нальных задач. Пользоваться при необходимо-	
		сти математической литературой.	
		Должен владеть методами, способами и сред-	
		ствами получения, хранения, переработки ма-	
		тематической информации, принятыми в мате-	
		матическом анализе, включая основные методы	
		решения типовых задач; навыками самооргани-	
		зации и самообразования для изучения вопро-	
		сов, касающихся математического анализа.	

2 Реализация компетенций

1 Компетенция ОК-7

ОК-7: способность к самоорганизации и самообразованию.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 2.

Таблица 2 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание этапов Виды	Знает основные понятия математического анализа; методы, способы и средства получения, хранения, переработки математической информации, принятые в математическом анализе, включая методы решения типовых задач математического анализа.	Умеет применять методы, способы и средства получения, хранения, переработки математической информации, принятые в математическом анализе, для решения типовых задач, для освоения других дисциплин, предусмотренных учебным планом, и решения профессиональных задач. Пользоваться при необходимости математической литературой.	Владеет методами, спо- собами и средствами получения, хранения, переработки матема- тической информации, принятыми в мате- матическом анализе, включая основные методы решения типо- вых задач; навыками самоорганизации и самообразования для изучения вопросов, касающихся математи- ческого анализа.
занятий	 Лекции; Практические занятия; Семинары; Групповые консультации; Самостоятельная работа студентов; 	 Практические занятия; Групповые консультации; Выполнение домашнего задания; Самостоятельная работа студентов; 	 Практические занятия; Групповые консультации; Выполнение индивидуального задания; Самостоятельная работа студентов;
Используемые средства оценивания	 Тест; Сообщение на семинаре; Ответ на коллоквиуме; Контрольная работа; Экзамен; 	 Контрольная работа; Оформление домашнего задания; Конспект материала, вынесенного на самостоятельную работу; Экзамен; 	 Контрольная работа; Оформление и защита индивидуального задания; Экзамен.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 3.

Таблица 3 — Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и	Знать	Уметь	Владеть
критерии			
Отлично	Обладает системными	Обладает диапазоном	Контролирует выпол-
(высокий	и глубокими знаниями	практических умений,	няемую работу, прово-
уровень)	в пределах изучаемой	требуемых для разви-	дит оценку выполнен-
	дисциплины с понима-	тия творческих реше-	ной работы, модифици-
	нием границ примени-	ний, абстрагирования	рует этапы работы
	мости	проблем	
Хорошо	Обладает знаниями	Обладает диапазоном	Оперирует основными
(базовый	основных понятий на	практических умений,	методами решения за-
уровень)	уровне определений	требуемых для реше-	дач и исследований
	и взаимосвязей меж-	ния типовых задач с	
	ду ними в пределах	элементами исследова-	
	изучаемой дисциплины	ния	
Удовлетвори-	Обладает знаниями	Обладает основными	Работает при прямом
тельно (порого-	основных понятий на	умениями, требуемыми	наблюдении и контроле
вый уровень)	уровне названий и	для выполнения про-	
	обозначений, алгорит-	стых типовых задач	
	мов решения типовых		
	задач		

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 4.

Таблица 4 — Показатели и критерии оценивания компетенции на этапах

Показатели и	Знать	Уметь	Владеть
критерии			
Отлично (высокий уровень)	 раскрывает сущность математических понятий, проводит их характеристику; анализирует связи между различными математическими понятиями; обосновывает выбор математического метода, план, этапы решения задачи; 	 свободно применяет методы решения задач в незнакомых ситуациях; умеет математически показать и аргументированно доказать положения изучаемой дисциплины; 	 свободно оперирует методами изучаемой дисциплины; организует коллективное выполнение работы, затрагивающей изучаемую дисциплину; свободно владеет разными способами представления математической информации.
Хорошо (базовый уровень)	 дает определения основных понятий и приводит примеры их применения; понимает связи между различными понятиями; аргументирует выбор метода решения задачи; составляет план решения задачи; 	 способен различить стандартные и новые ситуации при решении задач; умеет корректно выражать и аргументированно обосновывать положения изучаемой дисциплины; 	 критически осмысливает полученные знания; способен работать в коллективе, задачи которого затрагивают изучаемую дисциплину;

Показатели и	Знать	Уметь	Владеть
критерии			
Удовлетвори-			
тельно (пороговый уровень)	 воспроизводит основные факты, идеи; распознает основные математические объекты; знает алгоритмы решения типовых задач; 	 умеет применять алгоритмы решения типовых задач на практике; умеет работать со справочной литературой; умеет оформлять результаты своей работы; 	 поддерживает разговор на терисциплины; владеет основной терминологией изучаемой дисциплины.
		,	

2 Компетенция ОПК-3

ОПК-3: способность владеть основными методами, способами и средствами получения, хранения, переработки информации.

Для формирования компетенции необходимо осуществить ряд этапов. Этапы формирования компетенции, применяемые для этого виды занятий и используемые средства оценивания представлены в таблице 5.

Таблица 5 – Этапы формирования компетенции и используемые средства оценивания

Состав	Знать	Уметь	Владеть
Содержание	Знает основные поня-	Умеет применять	Владеет методами, спо-
этапов	тия математического	методы, способы и	собами и средствами
	анализа; методы,	средства получения,	получения, хранения,
	способы и средства	хранения, переработки	переработки матема-
	получения, хранения,	математической ин-	тической информации,
	переработки матема-	формации, принятые	принятыми в мате-
	тической информации,	в математическом	матическом анализе,
	принятые в матема-	анализе, для реше-	включая основные
	тическом анализе,	ния типовых задач,	методы решения типо-
	включая методы ре-	для освоения других	вых задач; навыками
	шения типовых задач	дисциплин, преду-	самоорганизации и
	математического ана-	смотренных учебным	самообразования для
	лиза.	планом, и решения	изучения вопросов,
		профессиональных за-	касающихся математи-
		дач. Пользоваться при	ческого анализа.
		необходимости матема-	
		тической литературой.	

Виды занятий Используемые	 Лекции; Практические занятия; Семинары; Групповые консультации; Самостоятельная работа студентов; 	 Практические занятия; Групповые консультации; Выполнение домашнего задания; Самостоятельная работа студентов; 	 Практические занятия; Групповые консультации; Выполнение индивидуального задания; Самостоятельная работа студентов;
оценивания	 Тест; Сообщение на семинаре; Ответ на коллоквиуме; Контрольная работа; Экзамен; 	 Контрольная работа; Оформление домашнего задания; Конспект материала, вынесенного на самостоятельную работу; Экзамен; 	 Контрольная работа; Оформление и защита индивидуального задания; Экзамен.

Общие характеристики показателей и критериев оценивания компетенции на всех этапах приведены в таблице 6.

Таблица 6 — Общие характеристики показателей и критериев оценивания компетенции по этапам

Показатели и	Знать	Уметь	Владеть
критерии			
Отлично	Обладает системными	Обладает диапазоном	Контролирует выпол-
(высокий	и глубокими знаниями	практических умений,	няемую работу, прово-
уровень)	в пределах изучаемой	требуемых для разви-	дит оценку выполнен-
	дисциплины с понима-	тия творческих реше-	ной работы, модифици-
	нием границ примени-	ний, абстрагирования	рует этапы работы
	мости	проблем	
Хорошо	Обладает знаниями	Обладает диапазоном	Оперирует основными
(базовый	основных понятий на	практических умений,	методами решения за-
уровень)	уровне определений	требуемых для реше-	дач и исследований
	и взаимосвязей меж-	ния типовых задач с	
	ду ними в пределах	элементами исследова-	
	изучаемой дисциплины	ния	
Удовлетвори-	Обладает знаниями	Обладает основными	Работает при прямом
тельно (порого-	основных понятий на	умениями, требуемыми	наблюдении и контроле
вый уровень)	уровне названий и	для выполнения про-	
	обозначений, алгорит-	стых типовых задач	
	мов решения типовых		
	задач		

Формулировка показателей и критериев оценивания данной компетенции приведена в таблице 7.

Таблица 7 – Показатели и критерии оценивания компетенции на этапах

Показатели и	Знать	Уметь	Владеть
критерии			
Отлично (высокий уровень)	 раскрывает сущность математических понятий, проводит их характеристику; анализирует связи между различными математическими понятиями; обосновывает выбор математического метода, план, этапы решения задачи; 	 свободно применяет методы решения задач в незнакомых ситуациях; умеет математически показать и аргументированно доказать положения изучаемой дисциплины; 	 свободно оперирует методами изучаемой дисциплины; организует коллективное выполнение работы, затрагивающей изучаемую дисциплину; свободно владеет разными способами представления математической информации.
Хорошо (базовый уровень)	 дает определения основных понятий и приводит примеры их применения; понимает связи между различными понятиями; аргументирует выбор метода решения задачи; составляет план решения задачи; 	 способен различить стандартные и новые ситуации при решении задач; умеет корректно выражать и аргументированно обосновывать положения изучаемой дисциплины; 	 критически осмысливает полученные знания; способен работать в коллективе, задачи которого затрагивают изучаемую дисциплину;

Показатели и	Знать	Уметь	Владеть
критерии			
Удовлетвори-			
тельно (пороговый уровень)	 воспроизводит основные факты, идеи; распознает основные математические объекты; знает алгоритмы решения типовых задач; 	 умеет применять алгоритмы решения типовых задач на практике; умеет работать со справочной литературой; умеет оформлять результаты своей 	 поддерживает разговор на терминологией изучаемой дисциплины; владеет основной терминологией изучаемой дисциплины.
		работы;	

3 Типовые контрольные задания

Для реализации вышеперечисленных задач обучения используются следующие материалы: типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, в составе:

Тест: итоговый тест по элементарным знаниям и практическим навыкам

1. Найдите область определения функции $f(x) = \ln(x^2 - 1), x \in \mathbb{R}$. Изобразите область определения на числовой оси.

2. Укажите точки разрыва функции

$$f(x) = \begin{cases} \frac{x+3}{x^2-9} & \text{при } x < 0, \\ \frac{x-1}{x^2-4} & \text{при } x > 0, \end{cases} \quad x \in \mathbb{R}.$$

3. Найдите область определения функции $f(z) = \frac{z-1}{z^2 + A}, z \in \mathbb{C}$.

4. Укажите функции, которые являются чётными. Ответ обоснуйте:

a)
$$f(x) = \cos(2x)$$
;

6)
$$f(x) = \sin(2x)$$
;

B)
$$f(x) = (x-1)^2$$
;

$$\Gamma) f(x) = \sin(2x+2)$$

$$\Gamma$$
) $f(x) = \sin(2x+2);$ д) $f(x) = \cos(2x+2);$ e) $f(x) = 2x^2.$

e)
$$f(x) = 2x^2$$
.

5. Укажите пределы, в которых присутствует неопределённость $\frac{0}{0}$:

a)
$$\lim_{x\to 3} \frac{x^2+1}{2x-6}$$

$$6) \lim_{x \to 3} \frac{\sin x}{x};$$

a)
$$\lim_{x\to 3} \frac{x^2+1}{2x-6}$$
; 6) $\lim_{x\to 3} \frac{\sin x}{x}$; B) $\lim_{x\to 3} \frac{x-3}{\ln(x^2-2x-2)}$; Γ) $\lim_{x\to \infty} \frac{4x+1}{3x+2}$.

$$\Gamma) \lim_{x \to \infty} \frac{4x+1}{3x+2}.$$

6. Укажите функции, бесконечно большие при $x \to -\infty$. Ответ обоснуйте:

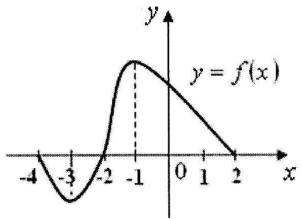
a)
$$f(x) = \cos(2x)$$
;

$$6) f(x) = e^{2x};$$

B)
$$f(x) = e^{-2x}$$
;

a)
$$f(x) = \cos(2x)$$
; 6) $f(x) = e^{2x}$; B) $f(x) = e^{-2x}$; $f(x) = \frac{1}{x}$; $f(x) = 2x^2$.

7. Найдите $\lim_{x\to 0} \frac{\ln(1+\sin(2x))}{\operatorname{tg}(4x)}$.


8. Найдите производную и дифференциал функции $y = x \sin(5x^2)$.

9. Найдите градиент функции $u(x,y) = y\sqrt{5x^2 + y}$. Вычислите его значение в точке M(0,1).

10. Удовлетворяет ли функция $y(x) = \frac{1}{8}x^4 - \frac{1}{3}x^3 + \frac{1}{2}x^2$ уравнению y''' = 3x - 2?

11. Дана функция $u(x,y) = \frac{x+1}{5y}$. Найдите $\frac{\partial^2 u}{\partial x \partial y}$.

12. Дан график функции f(x). Укажите промежуток, на котором выполняются три условия: $f(x) < 0, \quad f'(x) > 0, \quad f''(x) > 0.$

- 13. Найдите асимптоты графика функции $f(x) = \frac{x^3}{x^2 4x + 3}$.
- 14. Значение функции $y = \sqrt[5]{x^4}$ в точке $x_0 + \Delta x$ можно вычислить по формуле

1.
$$\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} + \frac{1}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$$

1.
$$\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} + \frac{1}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$$
 3. $\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} + \frac{4}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$

2.
$$\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} - \frac{4}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$$
 4. $\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} - \frac{1}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$

4.
$$\sqrt[5]{(x_0 + \Delta x)^4} = \sqrt[5]{x_0^4} - \frac{1}{5\sqrt[5]{x_0}} \Delta x + o(\Delta x)$$

15. Найдите точки экстремума функции $f(x) = x^{2/3} + x^{5/3}$.

16. Вычислите площадь фигуры, ограниченной линиями: $y = x^2 + 1, y = 2, x = 0.$

17. Найдите первообразную функции $f(x) = \frac{1}{(x-2)^2(x+3)}$.

18. Известно, что $\int_{-1}^{1} f(x) dx = \sqrt{3}$, $\int_{-1}^{1} g(x) dx = \sqrt{3} - 1$. Чему равен

$$\int_{0}^{1} \left[(\sqrt{3} + 2) f(x) + (\sqrt{3} - 1) g(x) \right] dx?$$

19. Пусть $\iint_{\Sigma} f(x,y) dx dy = \int_{1}^{2\pi} dx \int_{2\pi}^{\pi} f(x,y) dy$. Тогда область интегрирования D данного

интеграла имеет вид

- 1) треугольника
- 2) окружности
- 3) квадрата
- 4) прямоугольника

20. Установите соответствие между данными интегралами и названиями из списка:

1.
$$\int_{L} (x+y) dl$$
, no kohtypy $L: x^2 + y^2 = 9$;

2.
$$\iint\limits_{D}e^{x+y}\,dxdy,\;\;D-$$
фигура, ограниченная линиями x = 0, x = 1, y = 0, y = 2;

3.
$$\iint_S x\,dydz + 2y\,dxdz + z\,dxdy, \, S \, - \, \text{часть плоскости} \,\, x + y + 3z - 2 = 0 \,\, \text{в первом октанте}.$$

- а) Неопределённый интеграл д) Криволинейный интеграл первого рода
- б) Определённый интеграл
- е) Криволинейный интеграл второго рода
- в) Двойной интеграл
- ж) Поверхностный интеграл первого рода
- г) Тройной интеграл
- з) Поверхностный интеграл второго рода.

21. Запишите исходное соотношение для вычисления работы векторного поля

$$\mathbf{f} = \sqrt{y}\,\mathbf{i} + \frac{x}{2\sqrt{y}}\,\mathbf{j}$$

по перемещению материальной точки вдоль кривой L: $x = 2y^2$ от точки O(0,0), до точки B(8,2).

22. Вычислите интеграл. Если функция аналитическая, используйте формулу Ньютона-Лейбница:

$$\int\limits_L z\,dz;\;\;L-$$
 отрезок прямой, между точками $O(0,0),\,B(1,2).$

- 23. Является ли функция f(z) = z + \bar{z} аналитической? Ответ обоснуйте.
- 24. Дана функция $f(z) = e^{z+2}$. Найдите |f(z)|, $\arg f(z)$.
- 25. Вычислите значение производной функции $f(z) = \cos(3z + 6i)$ в точке $z_0 = 1 2i$.

Контрольные работы по темам:

- 1. Введение в анализ;
- 2. Дифференциальное исчисление;
- 3. Интегральное исчисление. Элементы теории поля.

Демо-варианты контрольных работ.

Тема: Введение в анализ

Вариант демо-1

1. Исследовать на непрерывность данную функцию. Охарактеризовать её точки разрыва.

$$f(x) = \frac{\sin(x+1)}{x^2 - 1} + \frac{\arctan(x-2)}{\sqrt{x^2 - 4x + 4}}$$

 $(581.P\Pi)$ В ответ вводить все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1;2;y).

2. Выделить главную часть бесконечно малой $\alpha(x) = \frac{\sin^3(3x)}{(x+3)(\sqrt{4+3x^2}-2)}$ при $x \to 0$. (071.РП) В ответ ввести сначала c, затем k.

Найти пределы

3.
$$\lim_{x \to 4} \left(\frac{x-3}{2x-7} \right)^{\frac{x+3}{4-x}}$$
; 4. $\lim_{x \to \infty} \left(\frac{x-3}{2x-7} \right)^{\frac{x^2-3}{2x-7}}$

Тема: Дифференциальное исчисление

Вариант демо-1

- 1. Дана функция $u = x^3y xy^3 3z^2$. Найдите:
- а) (Д01.РП) grad u и координаты вектора grad u в точке M(1,1,-1);
- б) (371) $\frac{\partial u}{\partial \mathbf{a}}$ в точке M в направлении вектора $\mathbf{a}\{2, -2, -1\}$.
- 2. К каким из четырёх основных классов относятся данные функции? Ответ обоснуйте. Найдите дифференциалы данных функций:

a)
$$f(x) = x \cdot \arcsin \frac{x}{2}$$
; 6) $f(x,y) = \begin{bmatrix} \sqrt{x^2 + y^2} \\ x^2/y^2 \end{bmatrix}$.

- 3. Докажите, что функция $z=\arctan\frac{y}{x}$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial y^2}+\frac{\partial^2 z}{\partial x^2}=0.$
- 4. Исследуйте функцию на аналитичность всеми возможными способами. Если какой-то из способов применить сложно (невозможно), обоснуйте почему.

a)
$$\text{Re}(z+2\bar{z});$$
 6) $\frac{z}{z^2+9}.$

5. Найдите с помощью правила Лопиталя:

a)
$$\lim_{x \to 0} \frac{e^{3x} - 1}{\arcsin 4x};$$

$$6) \lim_{x \to +\infty} x \sin \frac{4}{x};$$

B)
$$\lim_{x \to +\infty} (2^x + x)^{1/x}$$
.

Вариант демо-2

- 1. Дана функция $u = \arctan \frac{yz+1}{x}$. Найдите:
- а) (CP2.PП) grad u и координаты вектора grad u в точке A(1,2,-3);
- б) (6Т2) $\frac{\partial u}{\partial \mathbf{a}}$ в точке A в направлении вектора $\mathbf{a}\{3,0,-4\}.$

2. К каким из четырёх основных классов относятся данные функции? Ответ обоснуйте. Найдите дифференциалы данных функций:

a)
$$f(x, y) = x^y$$
;

6)
$$f(t) = e^{t^2} \cdot \mathbf{i} + \sin^2 t \cdot \mathbf{j} + \cos^2 t \cdot \mathbf{k}$$
.

3. Докажите, что функция $z=y\ln x$ удовлетворяет уравнению $\frac{\partial z}{\partial x}-y\cdot\frac{\partial^2 z}{\partial x\partial y}=0.$

4. Исследуйте функцию на аналитичность всеми возможными способами. Если какой-то из способов применить сложно (невозможно), обоснуйте почему:

a)
$$Im(z^2 + z);$$

6)
$$\sin(2z + 1)$$
.

5. Найдите с помощью правила Лопиталя:

a)
$$\lim_{x \to +\infty} \frac{\pi - 2 \arctan x}{e^{3/x} - 1};$$

6)
$$\lim_{x \to \pi/2} \left(\frac{x}{\operatorname{ctg} x} - \frac{\pi}{2 \cos x} \right);$$

B)
$$\lim_{x\to 0} x^{1/\ln(e^x-1)}$$
.

Тема: Интегралы. Элементы теории поля.

Вариант демо-1

1. Вычислите интегралы. Для аналитических функций используйте формулу Ньютона-Лейбница.

а)
$$\int\limits_{L}\cos(2z+1)\,dz;\ \ \, L$$
 — отрезок прямой, между точками $O(0,0),\,B(1,3).$

6)
$$\int\limits_{L}z\,\mathrm{Im}\,\,z\,dz;\quad L-|z|=2.$$

2. Найдите поток векторного поля $\bar{f}=z\bar{i}+x\bar{j}+y\bar{k}$ через часть плоскости 2x+3y+z=1, расположенную в первом октанте (γ — острый).

3. Найдите $div \, \bar{f}$ и $rot \, \bar{f}$ в точке M(1,2,-1), если $\mathbf{f} = x^2 \, \mathbf{i} + 2y \, \mathbf{j} + z \, \mathbf{k}$.

4. Какой из данных интегралов удобнее вычислять в полярной системе координат (ответ обоснуйте)? Вычислите этот интеграл.

а)
$$\iint_D e^{x+y} dx dy$$
, если D — фигура, ограниченная линиями $y=4,\ y=6,\ 3x-2y+4=0,\ 3x-2y+1=0.$

б)
$$\iint\limits_{D} \sqrt{9-x^2-y^2}\,dxdy, \ D \to \text{фигура}\ x^2+y^2\leqslant x.$$

5. Вычислить поток векторного поля $\mathbf{f} = x^2 \mathbf{i} + 2y \mathbf{j} + z \mathbf{k}$ через поверхность: $z = x^2 + y^2$, z = 1.

Выполнение индивидуального задания по темам:

- 1. Исследование функции;
- 2. Приложения определённого интеграла.

Тема: Исследование функции

Вариант демо-1

Охарактеризовать данное отображение. Провести полное исследование модуля и аргумента данной функции. Примечание: j — стандартное обозначение мнимой единицы в радиотехнических дисциплинах, $\omega \in (0, +\infty)$.

$$z(\omega) = 10 + j\omega \cdot 10^{-4}.$$

Тема: Приложения определённого интеграла

Вариант демо-1

1. Фигура D ограничена кривыми

$$y = x^4$$
, $y = \sqrt{x}$

- а) изобразите фигуру D на рисунке;
- б) поясните, можно ли считать D простейшей областью I типа; простейшей областью II типа;
- в) найдите площадь фигуры D (если можно, то двумя способами).
 - 2. Вычислите длину дуги кривой

$$\begin{cases} x = 2(t - \sin t), \\ y = 2(1 - \cos t), \end{cases} \quad 0 \le t \le \frac{\pi}{2}$$

Дополнительное задание: изобразите данную кривую на рисунке.

Темы лабораторных работ: не предусмотрены.

Темы для самостоятельной работы:

- 1. Элементарные функции;
- 2. Исследование функции;
- 3. Предел последовательности. Предел функции;
- 4. Дифференциал функции. Применение дифференциала в приближённых вычислениях.

Темы курсового проекта: не предусмотрен.

Темы семинаров:

- 1. Основные элементарные функции. Предел функции;
- 2. Понятие дифференцируемой функции. Дифференциалы и их применение в приближённых вычислениях;
- 3. Интеграл по многообразию (фигуре).

Темы коллоквиума:

- 1. Введение в анализ (включая функции комплексного переменного);
- 2. Дифференциальное исчисление (включая функции комплексного переменного);
- 3. Интегральное исчисление функций одной и мно-гих переменных (включая функции комплексного переменного). Элементы теории поля.

Темы домашних заданий:

- 1. Введение в анализ (включая функции комплексного переменного);
- 2. Дифференциальное исчисление (включая функции комплексного переменного);
- 3. Интегральное исчисление функций одной и мно-гих переменных (включая функции комплексного переменного). Элементы теории поля.

Экзаменационные вопросы:

1. Опишите класс основных элементарных функций. Для каждой из основных элементарных функций требуется проводить характеристику по плану исследования функции и строить график (a, b, c — действительные числа).

1.
$$f(x) = ax + b$$

1.
$$f(x) = ax + b$$
 2. $f(x) = ax^2 + bx + c$ 3. $f(x) = ax^3$

3.
$$f(x) = ax^3$$

4.
$$f(x) = \frac{a}{x}$$
 5. $f(x) = \sqrt{x}$ 6. $f(x) = \sqrt[3]{x}$

$$5. \ f(x) = \sqrt{x}$$

$$6. \ f(x) = \sqrt[3]{x}$$

7.
$$f(x) = \cos x$$

8.
$$f(x) = \sin x$$

9.
$$f(x) = \operatorname{tg} x$$

10.
$$f(x) = \operatorname{ctg} x$$

10.
$$f(x) = \cot x$$
 11. $f(x) = \arccos x$

12.
$$f(x) = \arcsin x$$

13.
$$f(x) = \arctan x$$
 14. $f(x) = \arctan x$ 15. $f(x) = a^x$

14.
$$f(x) = \operatorname{arcctg} x$$

$$15 f(x) - a^x$$

16.
$$f(x) = e^x$$

16.
$$f(x) = e^x$$
 17. $f(x) = \operatorname{ch} x$

18.
$$f(x) = \sin x$$

19.
$$f(x) = \log_a x$$
 20. $f(x) = \lg x$

20.
$$f(x) = \lg x$$

21.
$$f(x) = \ln x$$

- 22. Охарактеризуйте множества \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Поясните, какие числа называют рациональными, иррациональными. В чём заключаются свойства непрерывности, плотности и упорядоченности множества действительных чисел?
- 23. Сформулируйте понятия ограниченного множества, неограниченного множества. Символы ∞ , $-\infty$, $+\infty$. Операции с символами ∞ , $-\infty$, $+\infty$. Запишите в виде неравенств: $x \in (a, +\infty)$, $x \in [a, +\infty), x \in (-\infty, a), x \in (-\infty, a],$ каждый из указанных промежутков изобразите на числовой оси.
- 24. Понятие функции $f: X \in R_n \to Y \in R_m$. Как описать область определения и область значений функции при различных значениях m и n? (Можно ответить на примере m = 1, 2, 3 и n = 1, 2, 3). Понятие графика функции. В каких случаях имеет смысл говорить о графике функции?
- 25. Охарактеризуйте четыре класса функций $f:X\in R_n\to Y\in R_m$ при различных значениях m и n. Для каждого класса приведите пример (рекомендуем взять функции из других дисциплин, чтобы у примера был практический смысл).
- 26. Дайте определение и приведите примеры монотонно убывающей, монотонно возрастающей функций.
- 27. Дайте определение и приведите примеры четной, нечетной функций и функции общего вида; периодической функции.
- 28. Дайте определение и приведите примеры функций: ограниченной, неограниченной; ограниченной сверху, неограниченной сверху; ограниченной снизу, неограниченной снизу.
- 29. Дайте определение функции комплексного переменного. Покажите, что задание функции f(z) сводится к заданию двух функций двух вещественных переменных на каком-нибудь примере.
- 30. Дайте определение композиции функций. Приведите примеры. Как найти область определения сложной функции?
- 31. Понятие обратной функции. В каких случаях для данной функции может быть введена обратная функция? Приведите примеры обратных функций.

- 32. Понятие последовательности. Виды последовательностей. Приведите примеры числовой и векторной последовательностей.
- 33. Дайте определение окрестности конечной точки x_0 в \mathbb{R} . Сформулируйте понятия односторонних окрестностей в \mathbb{R} . Окрестности бесконечно удалённой точки в \mathbb{R} . Окрестности конечной и бесконечно удалённой точек в R_2 и R_3 .
- 34. Понятия внутренней и граничной точки множества, границы множества, открытого и замкнутого множеств.
- 35. Понятие предельной точки множества. Предельные точки в N и R.
- 36. Определение предела последовательности. Чем различаются определения для числовой и векторной последовательностей?
- 37. Сформулируйте теорему о пределе векторной последовательности. Теоремы о пределе комплексной последовательности.
- 38. Дайте определения на языке окрестностей и неравенств, приведите рисунок для понятий:

$$1. \lim_{x \to x_0} f(x) = A$$

1.
$$\lim_{x \to x_0} f(x) = A$$
 2. $\lim_{x \to x_0 \to 0} f(x) = A$ 3. $\lim_{x \to x_0 \to 0} f(x) = A$

3.
$$\lim_{x \to \infty} f(x) = A$$

4.
$$\lim_{x \to x_0} f(x) = -\infty$$

5.
$$\lim_{x \to x_0} f(x) = +\infty$$

4.
$$\lim_{x \to x_0} f(x) = -\infty$$
 5. $\lim_{x \to x_0} f(x) = +\infty$ 6. $\lim_{x \to x_0 - 0} f(x) = -\infty$

7.
$$\lim_{x \to x_0 + 0} f(x) = -\infty$$

8.
$$\lim_{x \to \infty} f(x) = +\infty$$

7.
$$\lim_{x \to x_0 + 0} f(x) = -\infty$$
 8. $\lim_{x \to x_0 - 0} f(x) = +\infty$ 9. $\lim_{x \to x_0 + 0} f(x) = +\infty$

10.
$$\lim_{x \to -\infty} f(x) = A$$

11.
$$\lim_{x \to +\infty} f(x) = A$$

10.
$$\lim_{x \to -\infty} f(x) = A$$
 11. $\lim_{x \to +\infty} f(x) = A$ 12. $\lim_{x \to -\infty} f(x) = -\infty$

13.
$$\lim_{x \to +\infty} f(x) = -\infty$$

13.
$$\lim_{x \to +\infty} f(x) = -\infty$$
 14. $\lim_{x \to -\infty} f(x) = +\infty$ 15. $\lim_{x \to +\infty} f(x) = +\infty$

15.
$$\lim_{x \to +\infty} f(x) = +\infty$$

- 39. Дайте определение предела функции f(z) при $z \to z_0$.
- 40. Дайте определение непрерывной функции f(z). Сформулируйте теорему о непрерывности функции f(z).
- 41. Сформулируйте теорему о пределе векторной функции. Теоремы о пределе комплексной функции комплексного аргумента.
- 42. Сформулируйте теорему о связи предела с односторонними пределами.
- 43. Сформулируйте три определения непрерывной функции в точке x_0 .
- 44. Теорема о непрерывности суммы, произведения и частного функций. Сформулируйте теоремы о непрерывности сложной функции, основных элементарных функций.
- 45. Приведите классификацию точек разрыва функции: $f: X \subseteq \mathbb{R} \to Y \subseteq \mathbb{R}$.
- 46. Дайте определения бесконечно малой и бесконечно большой функций. Приведите примеры бесконечно малых и бесконечно больших функций в конечной и бесконечно удалённой точках.

- 47. Сформулируйте и докажите теорему о связи бесконечно малой и бесконечно большой функций.
- 48. Сформулируйте теорему о произведении бесконечно малой и ограниченной функций.
- 49. Понятие эквивалентных бесконечно малых и бесконечно больших функций.
- 50. Главная часть бесконечно малых и бесконечно больших функций. Как её выделить?
- 51. Качественное сравнение бесконечно малых функций.
- 52. Качественное сравнение бесконечно больших функций.
- 53. Объясните, как применяют эквивалентные бесконечно малые и бесконечно большие функции при отыскании пределов. Сформулируйте теорему, лежащую в основе этого метода.
- 54. Как определяют бесконечно малые и бесконечно большие функции в случае $f: X \subseteq R_n \to Y \subseteq R_m$?
- 55. Дайте определение дифференцируемой функции. Понятия производной матрицы и дифференциала.
- 56. Строение производной матрицы в случае $f: X \subseteq R \to Y \subseteq R$. Необходимое и достаточное условие дифференцируемости функции $f: X \subseteq R \to Y \subseteq R$.
- 57. Строение производной матрицы в случае $f: X \subseteq R_n \to Y \subseteq R$. Понятие частных производных. Градиент.
- 58. Строение производной матрицы в случае $f: X \subseteq R \to Y \subseteq R_m$. Необходимое и достаточное условие дифференцируемости функции $f: X \subseteq R \to Y \subseteq R_m$.
- 59. Строение производной матрицы в случае $f: X \subseteq R_n \to Y \subseteq R_m$. Необходимые и достаточные условия дифференцируемости функций $f: X \subseteq R_n \to Y \subseteq R$ и $f: X \subseteq R_n \to Y \subseteq R_m$.
- 60. Сформулируйте линейное свойство производной. Приведите примеры применения этого свойства.
- 61. Сформулируйте правила дифференцирования произведения и частного. Приведите примеры применения этих правил.
- 62. Сформулируйте теорему о дифференцировании сложной функции. Приведите примеры применения этой теоремы.
- 63. Понятие производной по направлению. Запишите формулу вычисления производной по направлению.
- 64. Понятие дифференцируемой функции комплексного переменного. Производная. Дифференциал.
- 65. Условия дифференцируемости функции комплексного переменного (условия Коши-Римана и $\frac{\partial f}{\partial \bar{z}}$ = 0).
- 66. Понятие аналитической функции. Простейшие свойства аналитических функций.

- 67. Понятие производных высших порядков функций $f: X \subseteq R \to Y \subseteq R$ и $f: X \subseteq R \to Y \subseteq R_m$.
- 68. Понятие частных производных высших порядков. Для каких классов функций вводят это понятие?
- 69. Сформулируйте теорему о равенстве смешанных частных производных.
- 70. Геометрический и механический смысл производной функции $f: X \subseteq R \to Y \subseteq R$.
- 71. Как записать дифференциал для функций $f: X \subseteq R \to Y \subseteq R$ и $f: X \subseteq R \to Y \subseteq R_m$?
- 72. Как записать дифференциал для функции $f: X \subseteq R_n \to Y \subseteq R$?
- 73. Как записать дифференциал для функции $f: X \subseteq R_n \to Y \subseteq R_m$?
- 74. В чем заключается свойство инвариантности формы записи первого дифференциала функции $f: X \subseteq R \to Y \subseteq R$?
- 75. Как определяются дифференциалы d^2f , d^3f , ..., d^nf ? Запишите общий вид дифференциалов d^2f , d^3f , ..., d^nf для функций $f: X \subseteq R \to Y \subseteq R$, если x независимая переменная.
- 76. Запишите выражение для d^2f , если $f: X \subseteq R_2 \to Y \subseteq R$.
- 77. Запишите формулу Тейлора порядка n для функций $f: X \subseteq R \to Y \subseteq R$ и $f: X \subseteq R_n \to Y \subseteq R$ в дифференциальной форме.
- 78. Запишите формулу Тейлора порядка n для функций $f: X \subseteq R \to Y \subseteq R$, используя в записи производные.
- 79. Поясните, как применяют дифференциал и формулу Тейлора в приближённых вычислениях.
- 80. Получите формулу Маклорена для функции e^x .
- 81. Сформулируйте правило Лопиталя раскрытия неопределенности $\frac{0}{0}$.
- 82. Сформулируйте правило Лопиталя раскрытия неопределенности $\frac{\infty}{\infty}$.
- 83. Как раскрыть неопределенности $0 \cdot \infty, 0^0, 1^\infty, \infty^0$ с помощью правила Лопиталя?
- 84. Дайте определение точек экстремума для функций f(x) и $f(x_1, x_2, \dots, x_n)$.
- 85. Сформулируйте необходимое условие экстремума для функций f(x) и $f(x_1, x_2, \dots, x_n)$.
- 86. Сформулируйте достаточные условия экстремума для функций f(x), связанные со знаком f'(x).
- 87. Сформулируйте необходимые и достаточные условия выпуклости вниз (вверх) графика функции, связанные со второй производной.
- 88. Понятие точки перегиба и правило их отыскания.
- 89. Опишите правило дифференцирования обратных функций. Приведите примеры применения этого правила.

- 90. Покажите на двух-трёх примерах как получены производные из основной таблицы.
- 91. Объясните параметрический способ задания функций. Опишите правило дифференцирования параметрически заданных функций.
- 92. Поясните неявный способ задания функций $f: X \subseteq R \to Y \subseteq R$. Правило их дифференцирования.
- 93. Поясните неявный способ задания функций $f: X \subseteq R_2 \to Y \subseteq R$. Правило отыскания частных производных функций, заданных неявно.
- 94. Запишите уравнение касательной к кривой при различных способах её задания.
- 95. Уравнение касательной плоскости и нормали к поверхности.
- 96. Определение первообразной. Докажите, что любые две первообразные одной и той же функции отличаются на константу.
- 97. Понятие неопределённого интеграла. Свойства неопределённого интеграла.
- 98. Функции какого класса имеют первообразные? Что означают слова "неберущийся интеграл"?
- 99. Таблица интегралов. Как убедиться в справедливости формул таблицы?
- 100. Простейшие методы интегрирования: непосредственное интегрирование, метод подведения под знак дифференциала. Приведите примеры.
- 101. Формула интегрирования по частям. В каких случаях её применяют? Приведите примеры.
- 102. Отыскание интегралов типа $\int \cos \alpha x \cos \beta x \, dx$, $\int \cos \alpha x \sin \beta x \, dx$, $\int \sin \alpha x \sin \beta x \, dx$.
- 103. Какая функция называется дробной рациональной? Дайте определение правильной и неправильной рациональных дробей.
- 104. Какие рациональные дроби называются элементарными? Методы интегрирования элементарных дробей.
- 105. Как представить рациональную дробь в виде суммы элементарных?
- 106. Правила интегрирования выражений $\int \sin^m x \cos^n x \, dx$, m и n целые, m > 0, n > 0. Интегралы типа $\int R(\sin x, \cos x) \, dx$.
- 107. Интегралы типа $\int R(x, \sqrt[r_1]{x}, \sqrt[r_2]{x}, \dots, \sqrt[r_n]{x}) dx, r_i$ целые положительные числа. Интегралы типа

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1/q_1}, \left(\frac{ax+b}{cx+d}\right)^{p_2/q_2}, \dots, \left(\frac{ax+b}{cx+d}\right)^{p_n/q_n}\right) dx.$$

108. Интегралы, содержащие $\sqrt{a^2-x^2}$, $\sqrt{x^2+a^2}$, $\sqrt{x^2-a^2}$.

109. Как найдены интегралы дополнительной таблицы:

1.
$$\int e^{ax} dx$$
;

1.
$$\int e^{ax} dx$$
; 2. $\int \cos(ax) dx$; 3. $\int \sin(ax) dx$;

3.
$$\int \sin(ax) dx$$
;

$$4. \int \frac{dx}{a^2 + x^2}$$

4.
$$\int \frac{dx}{a^2 + x^2};$$
5.
$$\int \frac{dx}{\sqrt{a^2 - x^2}};$$
6.
$$\int \operatorname{tg} x \, dx;$$
7.
$$\int \operatorname{ctg} x \, dx;$$
8.
$$\int \frac{dx}{\sin x};$$
9.
$$\int \frac{dx}{\cos x};$$

6.
$$\int \operatorname{tg} x \, dx$$
;

7.
$$\int \operatorname{ctg} x \, dx$$
;

8.
$$\int \frac{dx}{\sin x};$$

9.
$$\int \frac{dx}{\cos x}$$
;

10.
$$\int \frac{dx}{x^2 - a^2}$$
; 11. $\int \ln x \, dx$; 12. $\int \arctan x \, dx$.

11.
$$\int \ln x \, dx$$
;

12.
$$\int \operatorname{arctg} x \, dx$$

- 110. Понятие определённого интеграла. Построение интегральной суммы. Геометрический смысл определённого интеграла.
- 111. Какие функции интегрируемы по Риману?
- 112. Свойства определённого интеграла, выраженные равенствами.
- 113. Свойства определённого интеграла, выраженные неравенствами.
- 114. Теоремы о среднем (свойства определённого интеграла).
- 115. Интеграл с переменным верхним пределом. Свойства функции $I(x) = \int_{-x}^{x} f(t) dt$.
- 116. Понятие интеграла, зависящего от параметра.
- 117. Доказательство формулы Ньютона-Лейбница.
- 118. Формула интегрирования по частям для определённого интеграла.
- 119. Замена переменных в определённом интеграле.
- 120. Вычисление площадей фигур в декартовых координатах.
- 121. Вычисление длины дуги кривой в декартовых координатах.
- 122. Понятие интеграла по фигуре. Построение интегральной суммы.
- 123. Свойства интеграла по фигуре.
- 124. Вычисление криволинейных интегралов первого рода.
- 125. Ориентированные кривые. Вычисление криволинейных интегралов второго рода.
- 126. Понятие векторного поля. Работа векторного поля.
- 127. Циркуляция векторного поля. Ротор векторного поля.
- 128. Условия независимости криволинейных интегралов от пути интегрирования.
- 129. Потенциальные поля. Отыскание потенциала поля.
- 130. Как строится интегральная сумма Римана от функции f(z)? Дайте определение интеграла Римана от функции f(z).

- 131. Получите вычислительные формулы для $\int\limits_{L}f(z)\,dz$. Общий случай.
- 132. Теорема Коши для односвязной области. Независимость интеграла аналитической функции от пути интегрирования.
- 133. Существование первообразной для аналитической функции. Формула Ньютона-Лейбница.
- 134. Геометрический смысл двойного интеграла. Вычисление двойного интеграла в декартовых координатах.
- 135. Двойной интеграл в полярных координатах. Переход из декартовой системы координат в полярную.
- 136. В каких случаях двойной интеграл выражается через повторный с постоянными пределами интегрирования?
- 137. Геометрический смысл тройного интеграла. Тройной интеграл в декартовых координатах.
- 138. Тройной интеграл в цилиндрической системе координат. Переход из декартовой системы координат в цилиндрическую.
- 139. Тройной интеграл в сферической системе координат. Переход из декартовой системы координат в сферическую.
- 140. В каких случаях тройной интеграл выражается через повторный с постоянными пределами интегрирования?
- 141. Формула для вычисления площади поверхности.
- 142. Вычислительные формулы для поверхностного интеграла первого рода.
- 143. Вычислительные формулы для поверхностного интеграла второго рода.
- 144. Поток векторного поля через поверхность. Дивергенция векторного поля.
- 145. Интегральные формулы: Грина, Стокса, Остроградского-Гаусса.

4 Методические материалы

Для обеспечения процесса обучения и решения задач обучения используются следующие материалы:

методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, в составе согласно пункту 12 рабочей программы:

Основная литература

1. Магазинников, Л.И. Дифференциальное исчисление [Электронный ресурс]: учебное пособие / Л.И. Магазинников, А.Л. Магазинников ; Томский государственный университет систем управления и радиоэлектроники (Томск). - Электрон. текстовые дан. - Томск: [б. и.], 2007. - on-line, 191 с. - http://edu.tusur.ru/training/publications/2246

- 2. Ельцов, А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263[1] с. Экземпляры всего:100.
- 3. Бермант, А.Ф. Краткий курс математического анализа / И.Г Араманович. С-Петербург.: Лань, 2010. 736 c. http://e.lanbook.com/books/element.php?pl1_id=2660
- 4. Петрушко, И.М. Курс высшей математики. Теория функций комплексной переменной. / И.М. Петрушко, А.Г. Елисеев и др. С-Петербург.: Лань, 2010. 368 с. http://lanbook.com/books/526
- 5. Магазинников, Л.И. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 212 с. (99 экз.)

Дополнительная литература

- 1. Бугров, Я.С. Высшая математика: учебник для вузов: В 3 т. / Я.С. Бугров, С.М. Никольский; ред. В.А. Садовничий. Т. 2: Дифференциальное и интегральное исчисление.- 7-е изд., стереотип. М.: Дрофа, 2005. 509 с. (31 экз.)
- 2. Ельцов, А.А. Практикум по интегральному исчислению и дифференциальным уравнениям: учебное пособие / А.А. Ельцов, Т.А. Ельцова; Федеральное агентство по образованию (М.), Том-ский государственный университет систем управления и радиоэлектроники (Томск). Томск: ТУСУР, 2005. 204 с. (285 экз.)

Практические занятия проводятся по учебным пособиям:

- 1. Магазинников, Л.И. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 212 с. (99 экз.)
- 2. Ельцов, А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263 с. Экземпляры всего:100.
- 3. Петрушко, И.М. Курс высшей математики. Теория функций комплексной переменной. / И.М. Петрушко, А.Г. Елисеев и др. С-Петербург.: Лань, 2010. 368 с. http://lanbook.com/books/526

Задания на контрольные работы и индивидуальные задания приведены в каждом из следующих учебных пособий:

- 1. Магазинников, Л.И. Практикум по дифференциальному исчислению: Учебное пособие / Л.И. Магазинников, А.Л. Магазинников; Министерство образования Российской Федерации, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 212 с. (99 экз.)
- 2. Ельцов, А.А. Интегральное исчисление. Дифференциальные уравнения : учебное пособие / А.А. Ельцов, Т.А. Ельцова ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2007. 263 с. Экземпляры всего:100.
- 3. Петрушко, И.М. Курс высшей математики. Теория функций комплексной переменной. / И.М. Петрушко, А.Г. Елисеев и др. С-Петербург.: Лань, 2010. 368 с. http://lanbook.com/books/526